
Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum Methodology

Incremental, Iterative

Software Development

from Agile Processes

Copyright 2003

Advanced Development Methods, Inc.

All Rights Reserved

 Revision 0.9

2

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Table of Contents
License and Restrictions .. 5
Introduction .. 8
Overview of Agile Processes ... 12
Agile Structure .. 13
Overview of the Scrum Process .. 15
Scrum Management ... 18
Value driven development .. 22
Scrum Management Roles .. 23
Overview of the Scrum Methodology .. 23
Meetings ... 24
Artifacts .. 25
Product Backlog ... 25
Sprint Backlog .. 29
Increment of Potentially Shippable Product Functionality .. 31
Quality of the Increment ... 32
Structure of Phases, Paths, and Activities ... 36
Scrum Phases... 37
Planning ... 37
Staging ... 38
Initiating ... 38
Developing .. 38
Releasing.. 39
1 Planning .. 40
1A New, Unfunded Projects .. 42
1B New, Funded Projects .. 43
1C Underway, Already Funded Projects .. 44
1D Fixed Price/Fixed Date Projects ... 45
1.1 Define the Project ... 47
1.15 Define Architecture ... 49
1.15 Define Architecture ... 50
1.16 Design System ... 51
1.2 Build Product Backlog ... 52
1.3 Estimate Product Backlog .. 54
1.4 Adjust Backlog Estimates .. 56
1.5 Plan the Releases ... 59
1.6 Prepare Bid .. 61
1.61 Prepare Fixed Price/Date Bid .. 65
1.7 Fund Project ... 66
2 Define Increment of Shippable Product ... 67
2A Internal Software Development .. 69
2B Commercial Software Development .. 70
2C FDA Life Critical Development .. 71
2D Mission Critical Development.. 72

3

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2E Package Selection Development .. 73
3 Multi-team or Offshore Development ... 74
3A Single Team Development ... 82
3B Multi-Team Development .. 83
3B.1 Develop Business Architecture .. 84
3B.2 Develop Systems Architecture ... 85
3B.3 Define Development Environment .. 86
3C Offshore Software Development ... 87
3C.1 Develop Requirements ... 88
3C.2 Develop Business Architecture .. 89
3C.3 Develop Systems Architecture ... 90
3C.4 Define Development Environment .. 91
3C.5 Develop Acceptance Tests ... 92
4 Development Environment .. 93
5 Project Staffing .. 97
6 Project Initiation .. 98
7 Sprint Planning Meeting .. 99
7.1 Facilitate Sprint Planning Meeting ... 101
7.2 Present Product Backlog .. 103
7.3 Select Product Backlog for Sprint ... 104
7.4 Define the Sprint Goal .. 105
7.5 Construct Sprint Backlog ... 107
8 Product Backlog Development ... 109
8.1 Manage Product Backlog .. 110
9 Sprinting to Develop Product Functionality ... 112
9.1 Develop Increment of Functionality .. 114
9.2 Maintain the Sprint Backlog ... 116
9.3 Assess Sprint Burndown ... 118
9.4 Readjust Commitments .. 121
9.5 Abnormal Sprint Termination ... 123
9.6 Stop External Interference.. 124
9.7 Remove Impediments ... 126
10 Daily Scrum... 127
10.02 Setup Facilities for Daily Scrums ... 128
10.1 Conduct the Daily Scrum ... 130
10.2 Commit and Status .. 134
10.3 Make Decisions .. 136
10.4 Remove Impediments ... 138
10.5 Attend the Daily Scrum .. 140
10.6 Scrum of Scrums .. 141
11 End of Sprint Review .. 144
11.1 Conduct Review ... 146
11.2 Demonstrate Functionality ... 148
11.3 Evaluate the Functionality ... 150
11.4 Manage the Release ... 151
11.5 Sprint Retrospective ... 153
11.6 Project and Sprint Reporting .. 154

4

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.7 Attend the Sprint Review ... 159
12 Create a Release ... 160
12.1 Create Product Backlog .. 161
12.2 Initiate Sprints to Build Release .. 162
Roles and Responsibilities - Product Owner .. 163
Roles and Responsibilities - ScrumMaster ... 166
Roles and Responsibilities - Team ... 167

5

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

License and Restrictions

Notice

This copy of Scrum is governed by the terms and conditions of an
Individual Scrum License. Such license must be signed by a representative of
Advanced Development Methods, Inc., be within the license term, and be in the
possession of the Licensee for the use of this copy of Scrum to be legal. This
license has been granted to a specifically named individual who is a Certified
ScrumMaster, as listed at http://www.controlchaos.com/certifiedscrum. Users,
viewers, readers, and others seeing this copy of the methodology must be that
specifically named individual. All other use by any other party is not covered by
this license.

The License has the following restrictions:

1. The Licensee cannot share the Scrum methodology with any other parties or
make copies other than for backup and never for the purpose of sharing or
distributing.. The Scrum methodology is for their individual use as a
reference source only;

2. The Licensee cannot resell, relicense, or transfer ownership of this license in
any manner to others; and,

3. The Licensee cannot let anyone else use the materials that are part of the
License.

6

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum License (Licensee Copy)
This Individual License for Scrum (the “License”) is granted to

_____________________ (“Licensee”) in consideration for the Licensee’s successful
completion of the ScrumMaster Certification class held
______________________,2003.

In fulfillment of this License, Licensee is provided with:

1. Scrum methodology, as a PDF;

2. Listing as a Certified ScrumMaster on the Certified ScrumMaster website;

3. Scrum software, as a Microsoft Excel 2000 add-in;, and,

4. Scrum training materials as used in the class

The licensee is entitled to use all of the materials in the License for their
own individual use. For example:

1. The Scrum methodology can be used as reference material;

2. The Scum training materials can be used to train others in the Scrum
methodology; and,

3. The Scrum software can be used by the licensee to develop backlog and
track project progress.

The License has the following restrictions:

1. The Licensee cannot share the Scrum methodology with any other parties or
make copies other than for backup and never for the purpose of sharing or
distributing.. The Scrum methodology is for their individual use as a
reference source only;

2. The Licensee cannot resell, relicense, or transfer ownership of this license in
any manner to others; and,

3. The Licensee cannot let anyone else use the materials that are part of the
License.

This License is valid for two years. It will expire two years from the date of
issuance. If Licensee wishes to renew the License at that time, facilities for
relicensing will be posted at the Certified ScrumMaster website.

For Advanced Development Methods

Name: Date:

For Licensee

Name: Date:

Email Address:

License and Restrictions

7

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

License and Restrictions

Scrum License (ADM Copy)
This Individual License for Scrum (the “License”) is granted to

_____________________ (“Licensee”) in consideration for the Licensee’s successful
completion of the ScrumMaster Certification class held
______________________,2003.

In fulfillment of this License, Licensee is provided with:

1. Scrum methodology, as a PDF;

2. Listing as a Certified ScrumMaster on the Certified ScrumMaster website;

3. Scrum software, as a Microsoft Excel 2000 add-in;, and,

4. Scrum training materials as used in the class

The licensee is entitled to use all of the materials in the License for their
own individual use. For example:

1. The Scrum methodology can be used as reference material;

2. The Scum training materials can be used to train others in the Scrum
methodology; and,

3. The Scrum software can be used by the licensee to develop backlog and
track project progress.

The License has the following restrictions:

1. The Licensee cannot share the Scrum methodology with any other parties or
make copies other than for backup and never for the purpose of sharing or
distributing.. The Scrum methodology is for their individual use as a
reference source only;

2. The Licensee cannot resell, relicense, or transfer ownership of this license in
any manner to others; and,

3. The Licensee cannot let anyone else use the materials that are part of the
License.

This License is valid for two years. It will expire two years from the date of
issuance. If Licensee wishes to renew the License at that time, facilities for
relicensing will be posted at the Certified ScrumMaster website.

For Advanced Development Methods

Name: Date:

For Licensee

Name: Date:

Email Address:

8

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum is simple. The practices are few and straightforward. But Scrum is hard. Management must
care and constantly be tending to the project realities rather than plans.

The Scrum methodology consists of this process description and the Scrum Project Management
software, which provides automated support for some of these activities.

The Scrum methodology is a complete methodology for managing the development of products.
Scrum is completely scalable, from small to large projects, from simple to complex projects. Scrum
is an agile process, so the probability of success with Scrum stays high throughout levels of
complexity until chaos is reached, at which point no methodology or process is adequate.

The Scrum methodology consists of phases and activities. The phases are Planning, Staging,
Development, and Release. Planning and Staging prepare the workload for the Development phase,
where all functional development is done iteratively, each Sprint creating a complete increment of
potentially releasable product functionality. The methodology spells out the few artifacts and roles
that are required to manage a project. These artifacts and roles are grouped within the phases in high
level activities that are performed by each role. The activities provide information on what to do, but
not how to do it. Scrum is an agile methodology. The people applying Scrum are provided with
guidance, but they will require flexibility and experience to manage the project work and complete
the activities. Their inspection of the unique project circumstances and characteristics is mandatory
to the successful completion of any activity.

Scrum is not a cookbook. It
is a guide. A key part of the
methodology is training of
the three key managers of a
Scrum project: the Product
Owner (or customer), the
ScrumMaster (or project
manager), and the
development team(s).
Training provides these
parties with the insights
required to intelligently
apply Scrum to their project.

Introduction

9

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Agile processes represent a new, nontraditional way to build complex products and systems. The
AgileAlliance (http://www.agilealliance.org) is a group of industry experts that has developed and
employed these processes. It first called this class of development processes “agile” at a meeting in
Salt Lake City, Utah in February, 2001. Scrum is one of the original agile processes, originating in
the early 1990’s. Other agile processes have emerged since then, including Extreme Programming,
Crystal, Adaptive Software Development, Feature Driven Development, and Dynamic Systems
Development Method. Collectively, they have been successfully employed in thousands of projects.
The project management activities used in Scrum are based on principles common to all agile
processes.

Scrum requires management to learn and use different methods from traditional methods of
managing product and system development. All project management requires planning, justifying
and initiating the project. Traditional project management duties include establishing and
maintaining PERT charts, producing status reports, orchestrating reviews, tracking resources,
ensuring time reporting, assigning tasks, and presenting deliverables. By comparison, Scrum project
management duties include Sprint and release management, impediment removal, and coaching.
Many of the traditional functions of management are unnecessary and irrelevant with Scrum project
management.

An Example

I recently helped initiate a project at a large energy company. What follows is a full description of all
of the work that was done to initiate the project; through the description, some of the differences
between traditional and agile project management become clear.

The customer and I considered formal training to implement Scrum, but we agreed that approach
was too academic and probably wouldn’t be real enough to the team. They would have trouble
implementing what they learned. We can describe how to ride a bike to someone, but they don’t
really “get it” until they experience how to balance while pedaling and moving toward a destination.
Agile processes feel different and the teams need to get that feel. If we just taught practices, the team
wouldn’t know when and how to apply them without blindly following rules. We thought that if we
implanted how agile feels, the practices would fit in and be easy to remember. Accordingly, we
orchestrated a workshop to initiate the project.

Prior to the project initiation workshop, the project managers were reluctant to get started. They
wanted to discuss things more, think things through more. Think about how you feel before jumping
into a cold lake to go swimming for a metaphor. Although they were interested in agile processes,
their projects were real life and important to them. They just didn’t see how agile would work. In
particular, they didn’t understand how they would be able to ensure that the teams were doing
everything that they needed to do.

Entering the workshop, these project managers looked and acted worried. They were used to starting
projects by building project plans and PERT charts, and these were absent. To make matters worse,
the project teams were new to both project managers, consisting of outside contractors. The project
managers looked and acted like they were entering into an arranged marriage with their second
cousins.

Introduction

10

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

The workshop flow was:

1. We present agile concepts and overview Scrum and XP.

2. Customer presents business domain.

3. We present product backlog, Sprint Planning, and Sprint concepts.

4. Team members introduce themselves.

5. Customer and team define a product backlog (prioritized requirements list) with enough work
to drive the team for several months of Sprints.

6. Customer and team brainstorm about how much functionality the team can build in the next
Sprint.

7. Team defines the Sprint backlog (their collective tasks) for the next Sprint to turn the selected
product backlog into working functionality.

8. We present daily Scrum, end of Sprint, Sprint signature, and management topics.

9. We present Extreme Programming (another agile process) practices and how they work with
Scrum, for Scrum was used to wrap the Extreme Programming engineering practices.

10. The project team starts the first Sprint.

The project managers completely turned around at step #6, when the team defines the work for the
next Sprint. At that moment, it was as though a burden had been lifted from each of their shoulders.
We start step #6 by reviewing the selected backlog, or what the team is thinking about turning into
coded, working functionality by the end of the next Sprint. We then ask the team to spend the next
four hours figuring out how they are going to create this working functionality, including a rough
design and the work tasks. We then don’t say anything else. No one except the team members talk.

At first there was an uncomfortable silence. The team members were thinking, “we’re in a training
session – they’ll tell us what to do next!” Except we didn’t, and the project manager had to stay
silent also. Soon the pressure of the silence acted on the team and team members started offering
some initial observations and questions to each other. This quickly escalates, because software
developers are usually very opinionated and have lots of ideas. In the normal, top-down project
management process, however, they aren’t usually asked; they are told!

The team brainstormed, plotted, schemed, and even planned how it would build the code during the
Sprint. The conversations started slowly, but soon people were writing on whiteboards, drawing
designs, noodling out approaches and designs for the functionality. As the team discussion
progressed, the ScrumMaster wrote down the tasks that were being mentioned. At critical points, the
customer or project manager would offer observations, make decisions, and help the team focus on
the work. After four hours, we called a timeout. The teams had defined their work for the next Sprint
as well as possible. Some unknowns would have to be worked out, some of the estimates were
vague, and new work would appear, but the team had gotten a feel for what they would do for the
next thirty days.

Introduction

11

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

As the team was brainstorming and planning, a light went off in the project manager’s heads.
Suddenly they experienced self-organization!! The team would self-organize to figure out what to do.
The manager’s role was completely shifted to one of facilitator, coach, and mentor. The project
manager would help and guide the team to do its best; this is radically different from what they had
feared – they were thinking traditionally. They had thought that they would have to define all of the
work and ensure that it got done. In Scrum, this is a complete “flip” in responsibilities. The team
takes this work from the project manager.

Someone may have read about Scrum, heard about Scrum, and can even talk about Scrum.
They use all of the right words. Until they experience Scrum at work, however, it’s all academic.
When we plan to introduce Scrum into new projects, we now take this into account. We now priori-
tize giving everyone the actual experience as soon as possible.

 Systems development isn’t a defined manufacturing activity turning out the same system over and
over again. Systems development is a research and development activity wherein teams of profes-
sionals wrest product functionality from emergent requirements and new or difficult technologies.
Scrum is an empirical process control model that manages and controls such work using frequent
inspections and empirical adaptation. The Agile processes and the Agile movement are based on this
certainty.

Agile processes are full of deceptively simple practices that have profound ramifications. For
example, several agile processes require that developers create a test case prior to writing code for a
piece of functionality. Seemingly reasonable and straightforward, this practice requires the developer
to have thought through the specification and design of the functionality prior to writing a single line
of code – and after the code is written he or she has the test in hand to see if it really works. This
simple practice cuts a swath through the burdensome, pretentious and practically unworkable prac-
tices of requirements driven testing and artifact driven coding.
Similarly, Scrum has a simple practice called the Daily Scrum; the development team meets daily to
review status. Each team member reports what he or she did since yesterday, what he or she will do
today, and also to identify anything that’s getting in the way. This practice has individuals commit to
peers what they will accomplish daily, and then report to their peers whether they were able to carry
out their commitment. Deep trust and shared responsibility and commitment result from this daily
individual honesty. Team members cover for each other’s weaknesses, helping each other accomplish
their commitments and self-organizing into otherwise unattainable productivity.

Through these and other equally effective practices - all rooted in empirical process control theory –
Agile processes deliver productivity. Not multiples of productivity, but exponential gains. Productiv-
ity measured in the rapid, iterative delivery of top priority business functionality. Productivity deliv-
ered by only building architectural components and features as they are needed. Productivity mea-
sured in business value, not lines of code.

At the root of all Agile processes is the understanding, based on experience and experimentation, that
the requirements, architectures, and designs of systems emerge, and that teams of customers and
developers self-organize to create the greatest business value iteratively and incrementally. Emer-
gence and self-organization are the threads of agility, rooted in the frequent inspections and adapta-
tion provided by iterative, incremental development.

Introduction

12

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

By Martin Fowler, www.martinfowler.com/newMethodology.html. “Most software development is a
chaotic activity, often characterized by the phrase “code and fix”. The software is written without
much of an underlying plan, and the design of the system is cobbled together from many short term
decisions. This actually works pretty well as the system is small, but as the system grows it becomes
increasingly difficult to add new features to the system. Furthermore bugs become increasingly
prevalent and increasingly difficult to fix. A typical sign of such a system is a long test phase after
the system is “feature complete”. Such a long test phase plays havoc with schedules as testing and
debugging is impossible to schedule.

We’ve lived with this style of development for a long time, but we’ve also had an alternative for a
long time: methodology. Methodologies impose a disciplined process upon software development
with the aim of making software development more predictable and more efficient. They do this by
developing a detailed process with a strong emphasis on planning inspired by other engineering
disciplines.
These methodologies have been around for a long time. They’ve not been noticeable for being
terribly successful. They are even less noted for being popular. The most frequent criticism of these
methodologies is that they are bureaucratic. There’s so much stuff to do to follow the methodology
that the whole pace of development slows down. Hence they are often referred to as heavy
methodologies, or to use Jim Highsmith’s term: monumental methodologies.

As a reaction to these methodologies, a new group of methodologies have appeared in the last few
years. For a while these were known a lightweight methodologies, but now the accepted term is agile
methodologies. For many people the appeal of these agile methodologies is their reaction to the
bureaucracy of the monumental methodologies. These new methods attempt a useful compromise
between no process and too much process, providing just enough process to gain a reasonable
payoff.

The result of all of this is that agile methods have some significant changes in emphasis from
heavyweight methods. The most immediate difference is that they are less document-oriented,
usually emphasizing a smaller amount of documentation for a given task. In many ways they are
rather code-oriented: following a route that says that the key part of documentation is source code.

However I don’t think this is the key point about agile methods. Lack of documentation is a
symptom of two much deeper differences:

• Agile methods are adaptive rather than predictive. Heavy methods tend to try to plan
out a large part of the software process in great detail for a long span of time, this works well
until things change. So their nature is to resist change. The agile methods, however, welcome
change. They try to be processes that adapt and thrive on change, even to the point of
changing themselves.
• Agile methods are people-oriented rather than process-oriented. They explicitly make
a point of trying to work with peoples’ nature rather than against them and to emphasize that
software development should be an enjoyable activity. “

Overview of Agile Processes

13

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Agile Structure
Agile processes use empirical, adaptive processes
for rendering emergent requirements into a
working system. An illustration of a traditional,
defined process shows individuals sequentially
completing a list of tasks, each task telling them
precisely what to do and how long it will take to
do. The illustration is linear, with each task done
after the other until all are completed.

An agile process has a skeleton and a heart. The
skeleton is the framework on which the rest of the
process works. It supports the iterative,
incremental nature of all agile processes. Its
backbone is the Sprint. While Scrum uses 30-day
Sprints, other agile processes use shorter or
slightly longer iterations, but they rarely exceed 60
days. Iteration length is limited so that the team is forced to deliver a potentially shippable product
increment with regularityt. At the end of every Sprint, the
increment is inspected, which dictates the project’s future
progress. If the increment is appropriate and useful, the
project progresses with only minor changes. If the
increment is unsatisfactory, the cause is determined and
adjustments made before the next Sprint begins. Anything
unexpected can be detected and adjusted to at the end of an
Sprint, based on the inspection of the increment.

The skeleton is shown in Figure 2. The lower circle
represents an Sprint, with the output from each Sprint a
potentially shippable product increment. The upper circle
represents the daily inspection that occurs during the Sprint,
where status is reported and progress inspected and adapted
to. This cycle repeats until the project is no longer funded.

Agile processes try to have all analysis, design, coding and testing work done within an Sprint.
Teams perform this work. The optimal team is a small, cross-functional group at the same site (or as
“collocated”); but since that’s hard to achieve, projects make do and adjust to less-than-optimal
circumstances. A new aspect of agile processes introduced by Alistair Cockburn (Agile Software
Development

Overview of Agile Processes

14

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of Agile Processes
Alistair Cockburn, Pearson Education, 2002) measures the impact of less-than-optimal teams,
helping management measure the costs and benefits of optimization. Agile processes operate opti-
mally when an organization adopts all of their recommended practices. When scaled to multiple,
distributed teams, however, the communication and coordination creates overhead.

The framework operates this way: At the start of an Sprint, the team reviews what it must do. Then,
it selects what it believes it can turn into an increment of potentially shippable functionality by the
end of the Sprint. The team is then left alone to make its best effort for the rest of the Sprint. At the
end of the Sprint, the team presents the increment of functionality that it built.

1 The heart of agile processes occurs within the Sprint. The team takes a look at the requirements, the
technology, and evaluates each other’s skills and capabilities. It then devises the best way it knows to
build the functionality, modifying the approach daily as it encounters new complexities, difficulties,
and surprises. The team figures out what needs to be done, and determines the best way to do it. This
creative process is the heart of the extreme productivity that’s found in agile processes.
In more traditional project management processes, management devises plans to which teams ad-
here. The creative process is largely performed outside the team, as management tries to predict the
best way for the team to build functionality. There is very little room left for team creativity and
flexibility.

I’ve implemented agile processes many times in projects that are stuck in so many preliminary
activities that the teams can’t get around to building user functionality. These activities include
setting up development environments, selecting the implementation hardware or software, figuring
out how to conform to external standards (such as FDA or DOD), or laying out detailed systems
architectures. Although this work is necessary, it has these problems:

1. The customer doesn’t value it. Although the development organization may know it’s re-
quired, the customer views it as overhead;
2. This preliminary work is usually performed by specialized groups that aren’t responsible for
delivering the increments of functionality to the customers; and,
3. It delays the delivery of valuable functionality and can allow the competition to catch up or
gain an advantage.

To avoid these problems, development teams do all this preliminary work in agile processes while
they’re building functionality. If the development teams require experts to do the work, they’re
included on the teams for as many iterations as it takes. However, this preliminary work is done in
parallel with the development of working functionality that can be demonstrated to the customer
In the early iterations, more time is usually allocated to preliminary work. Later iterations mostly
develop customer functionality. But in the end, every Sprint must demonstrate working user func-
tionality. Andy Hunt and Dave Thomas (The Pragmatic Programmer, Addison Wesley Longman,
2000, Andy Hunt and David Thomas) describe a technique for accomplishing functionality in early
iterations called “tracer bullets.” Here’s how it works: A single piece of functionality is developed
within the overall system structure and the development environment. This functionality works from
the user interface, through all intermediate levels to the persistent data stores and back. This “tracer
bullet” demonstrates that the development environment and operational environment work, allowing
the team and users to refine their aim in future iterations.

15

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum is a process for developing products such as software and quickly getting the products to the
customer. Scrum is based on empirical controls through inspection and adaptation. These controls
are implemented through five basic practices:

1. Iterations – All work is done in short iterations, usually lasting thirty days. Inspections occur
at the end of every Sprint. The development project cannot proceed in the wrong direction, or
in no direction, for more than one Sprint.

2. Increments – An increment of working functionality is produced every Sprint. At the end of
the Sprint, this increment is inspected. Artifacts and abstractions are not inspected, only the
reality of the results of the Sprint.

3. Emergence – Complex systems emerge unpredictably across time. Their end-state can be
anticipated, but cannot be predicted. It is useless to try to predict their end-states, and any
such predictions can be dangerously misleading. Scrum de-emphasizes traditional definitions
of the requirements, architecture and design of the system. These factors are allowed to
emerge across time and have successfully done so on thousands of agile projects.

4. Self-organization – There are many unpredictable factors in software development, ranging
from technology to personnel. Given this unpredictability, it is important that management
and teams be are given full authority to plan and organize their work as they go, using their
intelligence and creativity to deal with the unexpected. They rely on their experience. They
also use any of the documented, defined development approaches (e.g. object modeling
techniques, PERT charting techniques, use case requirements capturing) that they deem
helpful.

5. Collaboration – The prior control, “self-organization” works only if everyone collaborates
freely and openly with each other, contributing based on their capabilities instead of their
roles. The practices and working environment of agile processes facilitate collaboration, such
as the open working environments and paired programming practices.

Overview of the Scrum Process

16

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

A person trained in Scrum, called the ScrumMaster, is responsible for setting up all of the Scrum
meetings and ensuring that all Scrum participants follow Scrum’s practices and rules.

Scrum consists of iterations called Sprints. Each Sprint is thirty calendar days in length. During the
Sprint, a development team (or team) builds an Increment of potentially shippable product
functionality. To initiate a Sprint, a Product Owner meets with the Team for a 1-day Sprint
Planning Meeting. At this meeting, the Product Owner reviews the top priority requirements on a
Product Backlog, which is a prioritized list of all requirements that are known for the product or
system at that time. The development team selects that top priority Product Backlog that it believes
it can turn into an increment of potentially shippable product functionality (increment) within
the next Sprint. Once the Product Owner and the development team have agreed on what Product
Backlog to select (team selects the amount of top priority Product Backlog), the team develops a list
of tasks needed to build the functionality. This list of tasks emerges throughout the Sprint and is
called a Sprint Backlog.

The Sprint starts immediately after the Sprint Planning Meeting. Every day, the ScrumMaster
meets with the development team for a short daily status meeting called the Daily Scrum. At the
end of the Sprint, the development team, ScrumMaster, Product Owner, and other stakeholders
(customers, users) meet at a Sprint Review Meeting. At this meeting, the development team
demonstrates the increment of functionality that it developed during the Sprint.

The Scrum process consists of the following:

Sprint – a thirty-day iteration of work that results in an increment of product functionality;

Daily Scrum – a standup meeting where status is exchanged, progress is observed, and
impediments noted and removed;

Product Backlog – an emerging, prioritized list of user requirements that originated in the
product definition;

Sprint Planning Meeting - where each Sprint is planned;

Sprint Review Meeting - where the results of the Sprint are reviewed;

Sprint Backlog – a list of tasks that the team completes to turn product backlog into a
product increment during a Sprint;

Customer, user, stakeholder - anyone with an interest in the product or system being
constructed;

Product Owner - the person responsible for maximizing the value of the product to the
customers, users and stakeholders;

Development Team - one or more small teams that develop the system or product;

ScrumMaster - the coach of the teams that is responsible for the Scrum process and the
productivity of the teams; and,

Increment - an increment of potentially shippable product functionality that a team builds
every Sprint.

Overview of the Scrum Process

17

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Process

Scrum uses two complementary,
parallel cycles to build releases of a
system. One cycle sustains an
emerging list of prioritized require-
ments called the product backlog.
The other cycle consists of development iterations that build system increments of these require-
ments. These cycles are constructed so that the most appropriate and most essential system emerges
over the project’s iterations.

18

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Process

These cycles are implemented through the following steps:

1. A Scrum project starts with a vision of the system. The vision may be vague at first, stated in
market terms rather than system terms. The vision will become clearer as the project moves
forward. A metaphor of the system may also be defined to help guide development and to
provide a tangible communication model between users and developers. An initial vision and
metaphor can be usually created in a shortened Sprint.

2. The Product Owner, ScrumMaster and development team define and prioritize an initial
product backlog focusing on short-term requirements and releases that will extract the most
value from the vision.

3. The development team works during the Sprint to create an executable increment that
contains the top priority requirements. The team selects as many requirements as it can build
during the Sprint. They only build the architecture and design needed to deliver functionality
for these requirements.

4. The Product Owner continues defining requirements that will deliver value. They are added
to the prioritized Product Backlog. The Product Backlog changes during the project as the
business conditions change and as users respond to product increments.

5. At the end of every Sprint, the Product Owner (and customers, users, and stakeholders)
review the working system increment with the development team to see if it delivers the
expected value, and – if not – what changes need to be made. These changes are added to and
prioritized within the Product Backlog.

6. When the Product Owner wants to realize the value achieved to date, he or she can request
that product increments built to date be released. One or more Sprints will be used to polish
and implement the system into a releasable product.

Scrum Management
When a business operation decides that it needs a system or new product, it assigns someone to head
up the effort. For internal systems, this is often a department head. For product companies, this is
often a product manager. Scrum refers to this person as the Product Owner. To help formulate and
execute the project, the Product Owner turns to the IT or engineering organization for support and
staffing. The first step for IT is to assign an IT project manager to work with the product owner. The
IT project manager, known in Scrum as the ScrumMaster, becomes a coach, forming teams, coaching
and mentoring the individuals on the teams, and helping the teams optimize their productivity. The
ScrumMaster and the Product Owner collaborate to maximize ROI and control deliverables at the
macro level while helping the team control and organize itself at the micro level.

19

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Process

The Product Owner develops a plan, a roadmap of the future. Only the most immediate elements of
the plan are detailed, however. The rest remains a vision forecast through broad functionality and
release goal descriptions. Even this vision is broadly adjusted on an ongoing basis throughout the
project. The Product Owner exerts control and risk reduction empirically, responding to project
realities rather than trying to make the realities fit a plan. Projects are run iteratively, with increments
of functionality delivered every Sprint. The Product Owner manages the progress, the results, and the
interaction of business conditions, technology, and people daily, and in detail at the end of every
Sprint. The Product Owner plans for each new Sprint based on the empirical evidence of what can be
done and what has been done.

Control through inspection and adaptation is also uncommon in IT projects. Scrum provides detailed
information and tips on how to empirically manage a project, using agility to maximize the value
delivered by the project. Management shifts to assessment, prediction, and coaching. Figure 1 indi-

cates some of the pressure
points for exerting this
management influence.
Every one of these pressure
points is used to improve the
productivity of the team and
the value of the resultant
functionality. Agile project
management measures
productivity in ROI, ignoring
the more arcane measures of
lines of code and function
points. These practices help
you stay on top of an effort
to produce a valuable system
in a complex situation.

20

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Process

Scrum project management establishes a vision and general timetables and release goals.
Development is conducted in thirty-day iterations. At the end of every thirty days, the Product Owner
inspects the results, assesses changes in the business environment, and empirically determines what
to do next. The underlying assumption is that the project’s events are too detailed to predict. Scrum
instead sets up iterations of work and manages the results. Scrum management’s consistently zeroes
in on the next most valuable thing to do, and maximizes the productivity of the teams doing the
work.

Planning as a basis for inspection and empirical response is uncommon in almost all Information
Technology (IT) projects. Over the last ten years, this type of planning has been widely adopted in
product organizations, however. I’ve provided details and tips for introducing agile planning
practices into the traditional organization found in most IT shops. One practice is the formalization
of the “user” role into a Product Owner that is responsible for project ROI; the details of this practice
solve the long standing problem of “user involvement” in automation projects. One tip is to initiate
projects using three-day workshops. The workshop not only starts the team building product
functionality, but it also familiarizes everyone with the new roles and feel of Scrum project
management.

When Scrum is used, it is the business unit – that is, the group of people who are going to be using
the product in the end – that drives and runs the project from its beginning to its end. In this
methodology, the activities that must be performed by the business unit are laid out.

Scrum occurs proactively and intelligently. The Product Owner and ScrumMaster don’t study
reports; they go out and inspect project activities. The expectation that project management can be
applied by rote is abandoned prior to entering the realm of Scrum.

The benefits of Scrum include:

1. Putting the Product Owner (customer, user) in charge of the development project;

2. Allowing the Product Owner to change and create requirements as the project progresses;

3. Ensuring that the most important functionality is built first;

4. Always focusing on only the most important functionality;

5. Ensuring that only functionality that the Product Owner wants is built, so that there is nothing
extra to build, pay for, or maintain;

6. Achieving new working functionality every thirty days;

7. Allowing the Product Owner the choice to release the already built functionality at any time.

8. Eliminating the need for projects to be funded more than thirty days in advance;

9. Maximizing the return on investment from the project; and

10. Identifying something can be done to improve productivity every single day.

21

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Neither the value of Scrum nor the difficulty of implementing it organizationally should be
underestimated. Decades and billions of dollars have been spent teaching traditional project
management; whole institutions exist to teach and certify individuals. Almost everyone in IT has
either been learned and employed this type of project management, or been in projects where they
have been subjected to it. The IT culture reflects this, in personnel practices, expectations about what
is valuable, and ways of interacting with users. Conversely, users have learned to work with IT
within this type of project management, where projects are passed “over the wall” to IT. Over the
years, we’ve learned how to deflect the blame of project failures. Scrum changes all of this.

I’ve found it very simple and straightforward to resuscitate single projects using Scrum. The results
are gratifying; IT gets a taste of agility and the organization gets a taste of success. I’ve found
organization-wide implementation to be much harder. Careful planning, implementation, evaluation,
and change management practices are required for agile project management to stick. The results that
I’ve seen at more than one early-adopter show the effort is worth making.

Overview of the Scrum Process

22

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Value driven development
When a systems development project is funded, the Product Owner has a vision of what value the
system will bring to the business unit. When planning the project, the Product Owner has to plot out
the costs, functionality, implementation dates, and quality. However, these are just planning
mechanisms. Too often, however, the Product Owner spends the rest of the project trying to constrain
costs, justify slipped dates, and ensure adequate functionality. What value the project will deliver is
often forgotten in the heat of the project.

Scrum project management refocuses the Product Owner on the value the system delivers. The value
is expressed as a function of the Product Owner’s ongoing choice of cost, quality, time, and
functionality:

value = f(cost, time, functionality, quality)

Value driven projects leave the determination of the variables in the Product Owner’s hands
throughout the project. The Product Owner authorizes development Sprint by Sprint, and is free to
change any of the variables based on progress to date and delivered value. For instance, if
deregulation occurs, the requirements for an energy company project may significantly change. The
Product Owner may want to increase the cost and bring in the date to maximize value.

At the end of a Sprint, the Product Owner reviews the working system functionality with the team.
Based on the review, the Product Owner can:

� Reprioritize and change the next set of top priority requirements;

� Request that the demonstrated increment be implemented;

� Increase the cost of future Sprints by requesting additional teams to work on the product backlog;

� Adjust the quality to increase or decrease the amount of functionality delivered in an Sprint; and

� Not fund additional Sprints because the value received for the cost is inadequate.

Overview of the Scrum Process

23

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Methodology

Scrum Management Roles

Project management is critical to the success of projects, even projects following agile processes.
Without management, project teams may pursue the wrong project, may not include the right mix of
personalities or skills, may be impeded by organizational dysfunctionality, or may not deliver as
much value as possible. The table below outlines the management roles and responsibilities within a
Scrum project. The Scrum methodology consists of various activities that are assigned to these roles.

24

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Meetings
There are three primary meetings in Scrum, the meeting that initiates a Sprint, a daily status meeting
during the Sprint, and the meeting that ends the Sprint. These meetings largely replace other formal
and management meetings held during development projects. These meetings are thoroughly
described in the methodology Activities. Below are summaries:

Sprint Planning Meeting - the Sprint is planned during this meeting. The meeting consist of two
parts, each usually lasting four hours:

- Backlog selection - the Product Owner presents the highest priority backlog to the
development team. They collaborate about how much can be turned into an increment of
potentially shippable product functionality during the next Sprint. The team selects as much
as they believe they can handle.

- Sprint workload planning - the team defines the architecture and design of the functionality
that it has selected, and then defines the work, or tasks, to build that functionality during the
next thirty calendar days.

Daily Scrum - is a short daily status meeting (usually no longer than fifteen minutes) for the
development team.

Sprint Review Meeting - is an informal presentation by the team of what the functionality it has
developed during the Sprint to the Product Owner and “stakeholders” in the project. The meeting
usually lasts four hours. A project retrospective is held at the end of the meeting, where ways to
improve the next Sprint are explored and implemented.

Overview of the Scrum Methodology

25

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Artifacts
Product Backlog, Sprint Backlog, Increment of Potentially Shippable Product Functionality

Product Backlog
An evolving, prioritized queue of functionality is called the Product Backlog.

The requirements for the system or product being developed by the project(s) are listed in the
Product Backlog. The Product Owner is responsible for the Product Backlog, its contents, its
availability, and its prioritization. The Product Backlog represents everything that anyone interested
in the product or process has thought is needed or would be a good idea in the product. It is a list of
all features, functions, technologies, enhancements, and bug fixes that constitute the changes that
will be made to the product for future releases. Anything that represents work to be done on the
product is included in Product Backlog. These are examples of items that would go on the Product
Backlog:

- Allow users to access and view account balances for last six months;

- Support distributed development teams;

- Improve scalability of product;

- Simplify installation process when multiple databases are used; and,

- Determine how workflow can be added to product.

Product Backlog isnever complete, and the initial cut at developing it only lays out the initially
known and well understood requirements. Sources of Product Backlog are as formal or informal as
the hosting organization. The first Product Backlog may be a list of requirements that is gleaned
from a vision document, garnered from a brainstorming session, or derived from a marketing
requirements document. To get the first Sprint going, Product Backlog only needs to contain enough
requirements to drive a thirty-day Sprint. A Sprint can start from only concepts and a wish list.

 The Product Backlog evolves as the product and the environment in which it will be used evolves.
Backlog is dynamic, in that management constantly changes it to identify what the product needs to
be appropriate, competitive, and useful. As long as a product exists, Product Backlog also exists.

Backlog originates from many sources. Product marketing will generate features and functions. Sales
will generate backlog that will cause the product to be more competitive or please a particular
customer. Engineering introduces backlog that builds technology that holds the whole product
together. Customer Support enters backlog to fix major product flaws.
Product Backlog is sorted in order of priority. Top priority Product Backlog drives immediate devel-
opment activities. The higher a backlog’s priority, the more urgent it is, the more it has been thought
about, and the more consensus there is regarding its value. The higher the priority, the clearer and
more detailed the backlog. Better estimates are made based on the greater clarity and increased

Overview of the Scrum Methodology

26

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

detail. The lower the priority, the less the detail, until you can barely make out the backlog item.
In addition to product features and technology, backlog items include issues. Issues require resolu-
tion before one or more backlog items can be worked on. For example, if response time is erratic and
becoming and hot topic in the industry press, then this might be included as an issue in the Backlog.
This issue is not ready to be defined as something to develop into a product. However, it needs to be
dealt with and perhaps turned into Product Backlog in the form of features or technology to be
developed. Issues are prioritized, just like regular Product Backlog. The Product Owner is respon-
sible for turning issues into work that the Scrum Team selects for a Sprint. Until he or she converts
the issue to regular Product Backlog, it remains as “unworkable” Product Backlog. This ensures that
the team isn’t swamped by having to think about outstanding issues while it works.

As a product is used, as its value increases, and as the marketplace provides feedback, the product’s
backlog becomes larger and more comprehensive. What a team needs to do never stops changing,
and so the requirements never stop changing. It makes little sense to pretend that this is not the case
and attempt to set requirements in stone before beginning design and construction.

All you need in Scrum is a product vision and enough top priority items on the backlog to begin one
Sprint, or Sprint, of incremental development on the product. The rest emerges. Product Backlog is
an inventory item for software development, and it is never accumulated more than necessary.

An example of Product Backlog maintained on the Scrum Product Management tool, based in a
spreadsheet, looks like:

Overview of the Scrum Methodology

27

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

This spreadsheet is the Product Backlog in March, 2003, for the Scrum Project Management
software. The rows are the backlog items, interspersed by Sprint and Release dividers. For instance,

all of the rows above Sprint 1 were worked on in that Sprint. The rows between Sprint 1 and Sprint 2
were done in Sprint 2. Notice that the row “Display tree view of product backlog, releases, sprints” is
duplicated in Sprint 1 and Sprint2. This is because row 10 wasn’t completed in Sprint 1, so it was
moved down to the Sprint 2 for completion. If we decided that it was lower priority after Sprint 1, we
could have moved it even lower down the priority list.

The first four columns are the backlog item name, the initial estimate, the complexity factor, and the
adjusted estimate. These are described in more detail later in the methodology. The next columns are
the Sprints during which the backlog is developed. When the backlog is first thought of and entered
into the Product Backlog, its estimated work is placed into the column of the Sprint that is going on
at that time. Most of the backlog items shown were devised by the developers and myself before
starting. The sole exception is row 31 (Publish facility for entire project, publishing it as HTML web
pages), which we didn’t think of until during Sprint 3.

Overview of the Scrum Methodology

28

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

A burndown chart shows the amount of work remaining across time. If we track this for the
anticipated release, it looks like the chart on the right after the first four Sprints. Even though the
work declined, the trend line slope decreased after Sprint 2 because the work of the backlog item in
row 31 was added to the total work for that Sprint.

The burndown chart is an excellent way of visualizing the impact of working on all of the items in
Release 1 while evaluating what
should be in Release 1 and adding or
removing items. This allows the
Product Owner to “what if” by adding
and removing functionality from the
release to get a more acceptable date.
Or extending the date to include more
functionality. The burndown chart is
the collision of reality (work done and
how fast it’s being done) with what is
planned, or hoped for.

The backlog items in the Product
Backlog for Future Sprints is pretty
coarse grained. We haven’t started any
more work on these items, so we
haven’t expended the time to more
finely estimate them. Similarly, there
are plenty more requirements for this
product. They just haven’t been
thought through. When we have the
time or inclination to start development again, more backlog will be defined. This is a perfect
example of the requirements for the product emerging. By deferring building inventory of backlog
until we need it, we have been able to get to building functionality without waiting for a detailed
analysis of the requirements of what may never be built.

Overview of the Scrum Methodology

29

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Sprint Backlog
The Sprint Backlog defines the work, or tasks, that a team has defines for turning the Product Back-
log it selected for that Sprint into an increment of potentially shippable product functionality. The
team consists of everyone who will be doing the actual work. After establishing the Sprint goal, the
team determines what work will have to be performed in order to reach the goal. All team members
are required to be present when this is determined. The team may also invite other people to attend in
order to provide technical or domain advice. The Product Owner often attends, too, but this is the
team’s meeting. It is often in this meeting that a team realizes that it will either sink or swim as a
team, not individually. The team realizes that it must rely on its own ingenuity, creativity, coopera-
tion, collaboration, and effort. As it realizes this, it starts to take on the characteristics and behavior
of a real team. During this meeting, management and the user should not do or say anything that
takes the team off the hook.

The team compiles a list of tasks it has to complete to meet the Sprint goal. These tasks are the
detailed pieces of work needed to convert the Product Backlog into working software. Tasks should
have enough detail so that each task takes roughly four to sixteen hours to finish. This task list is
called the Sprint Backlog. The team self-organizes to assign and undertake the work in the Sprint
Backlog. Sometimes only a partial Sprint Backlog can be created. The team may have to define an
initial architecture or create designs before can fully delineate the rest of the tasks. In such a case, the
team should define the initial investigation, design, and architecture work in as much detail as
possible, and leave reminders for work that will probably have to be done once the investigation or
design has been completed. At that time, the work will be more fully understood and can be listed in
more detail.

The team modifies its Sprint Backlog throughout the Sprint. As it gets into individual tasks, it may
find out that more or fewer tasks are needed, or that a given task will take more or less time than had
been expected. As new work becomes required, the team adds it. As tasks are worked on or com-
pleted, the hours of estimated remaining work for each task are updated. When tasks are deemed
unnecessary, they are removed. Only the team can change its Sprint Backlog during a Sprint. Only
the team can change the contents or the estimates. The Sprint Backlog is a highly visible, real time
picture of the work that the team plans to accomplish during the Sprint.

Sometimes the Scrum Team discovers that it has selected too much Product Backlog to complete in a
single Sprint. If this happens, the ScrumMaster immediately meets with the Product Owner. They
jointly identify Product Backlog that can be removed while still meeting the Sprint Goal.
Teams become better at Sprint planning after the third or fourth Sprint. At first, a team tends to be
nervous about taking on responsibility and it under-commits. As it becomes more familiar with
Scrum processes, as it starts to understand the functionality and technology, and as it gels into a
team, it commits to more work.

Overview of the Scrum Methodology

30

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Overview of the Scrum Methodology

31

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Increment of Potentially Shippable Product
Functionality

A number of people have questioned how Scrum and other agile processes support mission critical,
FDA approved, or other varieties of software systems. These questions have arisen because the
vanilla version of the most popular agile processes describe the construction of software that is
single use; that is, it is used within the organization that develops it, with the development mostly
done by the internal Information Technology (IT) organization.

Scrum requires development teams to built an increment of product functionality every Sprint. This
increment must be potentially shippable, if the customer desires to implement the functionality. This
requires that the increment consist of thoroughly tested code that has been built into an executable,
and the user operation of the functionality is documented, either in Help files or user documentation.

If the product increment that is created during the Sprint has more exacting use, the development
organization usually defines the additional product requirements as standards or conventions. For
example, the Federal Drug Administration (FDA) must approve a product that will be used in life-
critical circumstances by in numerous health care settings if the product is to be used in the United
States. As part of the approval process, the FDA checks that specific information regarding the
product is provided, such as requirements traceability and specific functionality operation. For each
increment to be potentially shippable, these additional facets of the product must also be developed –
so that each increment of the product is potentially ready for FDA approval.

Similarly, some products require that performance requirements be modeled and the performance
demonstrated mathematically, not just through statistical measurement of the actual system. The
model with all required rigor is thus an additional part of each iteration’s potentially shippable
increment.

When the Product Owner chooses to implement a set of developed functionality, Sprints are
established to release the product. These Sprints finalize the selected increments of functionality into
a shippable release. If the increments are fit for their purpose, these Sprints are short and few. For
example, if the release is an FDA approved teleradiology system, the increments of functionality
should include all of the deliverables that are required for FDA approval. To the extent that these
deliverables haven’t been included, they must be created and included in the release sprints.

Scaling agile processes to build any unique, non-single use, system means ensuring that the
development team builds potentially shippable increments of functionality. If not already present, the
standards, conventions, and practices that a development team must follow have to be developed.
These standards, conventions and practices are staged as high priority work. Their development in
the initial iterations ensures that subsequent Sprint’s work will produce potentially shippable
increments of functionality.

The phrase used in agile development for such an iterative, incremental process is “sashimi”, a thin
slice of a product which contains all aspects of the final product. The word sashimi is related to
sushi; one slice of sushi is similar to all other slices.

Overview of the Scrum Methodology

32

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Quality of the Increment
Many organizations are still in quest of quality, even after the advent of Total Quality Management,
CMM, and now Six Sigma. Scrum also addresses the issue of quality. Teams are required to
demonstrate potentially shippable product functionality at the end of every Sprint. As I discussed
previously, the functionality must contain all of the artifacts appropriate for that type of system.
Functionality requiring FDA approval requires artifacts for requirements traceability, for instance.

Implicit in the definition of “potentially shippable” is quality. Quality increments of functionality
have at least three dimensions:

- External quality. The product has fitness of purpose to the intended user, including ease of
use;

- Internal quality. The product is well designed, well structured, free of internal errors, and
maintainable and sustainable; and,

- Appropriateness. Systems intended for FDA approval, mission critical, complex, embedded
and other types of systems require artifacts in addition to high quality code.

Scrum calls for cross-functional teams. The expertise to create both external and internal quality in
each increment is built into the team. The team is asked to build functionality with enough quality
that it is potentially shippable. It has to meet all three of the above quality dimensions. There is no
passing the buck, saying to a quality group, “here’s the code, see if you can find anything wrong with
it!”

Scrum implements the agile practices of inspection and adaptation. For inspection to be of value, the
inspectors need to have a pretty good idea what they are inspecting. If the increment of working
functionality that is being demonstrated has good user quality (that is, looks good), but has poor
internal quality (buggy, bad design, duplicate code), then the increment only looks potentially
shippable. In reality, quite a bit more work is required prior to actual shipment.

If the appropriate standards, conventions, and practices are followed and the team implements good
external and internal quality, the development and release iterations look like figure 6. Most of the
work is done in the development iterations building a quality, fit for use product. The release
iterations are few and short, mostly polishing the
functionality into releasable status.

Overview of the Scrum Methodology

33

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

If the appropriate standards, conventions, and practices are
not staged and developed early - or the team doesn’t build
in adequate external and internal quality - the development
and release iterations look like figure 7. That is, the
potentially shippable product increments demonstrated at the
end of every Sprint were not suitable for use. They required
significant additional work to acquire sufficient quality to
ship.

In the circumstances shown in figure 7, the product owner
doesn’t know what is being inspected. It may look good
(external quality), but have inadequate internal or
appropriateness quality. Scrum states that the team is supposed to demonstrate potentially shippable
functionality, but sometimes-significant additional work is needed prior to shipment. Maybe this has
happened because:

- The team doesn’t have or follow adequate engineering practices;

- The standards weren’t developed for the increment to be usable in its target environment
(FDA products, for instance); or,

- Management has pressured the team to develop more functionality in the Sprint than can be
developed with adequate quality.

Regardless, the consequences are realized during the release iterations. The product owner probably
wants the release soon after the development iterations. However, poor quality makes it difficult if
not impossible to assess how many of these iterations will be required. Workload burndown graphs
demonstrate what happens to each type of project. A workload burndown graph represents workload
on the vertical axis and time on the horizontal axis (divided into 30 day iterations in the figures
shown). I track the change in workload across time. When I project the trend from the work
burndown, I can estimate when the workload will be complete and the product ready for release. The
following two burndown graphs used in Scrum reflect the dilemma posed by not being able to know
the quality of the increments of functionality.

Overview of the Scrum Methodology

34

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

In Figure 8. the product functionality has been developed more or less according to schedule and
expected quality. The Product Owner had estimated one release Sprint prior to shipment. As the
functionality is being readied for shipment or release, there are no surprises and the expected release
date is met.

In Figure 9, the product functionality has been developed more or less according to schedule, but the
internal quality is poor and the artifacts required to make it releasable to its intended users (FDA,
etc.) are not completed. The Product Owner had estimated one release Sprint prior to shipment, but
now cannot reliably estimate when this will occur. Figure 9 shows that four additional release
iterations were required and that the work is completed linearly (rarely the case). Introducing quality
into already developed functionality is unpredictable. One or more of the following scenarios may
play out while in the release iterations:

- The internal structure and design is poor. Refactoring has been omitted and duplicate code
and structural inefficiencies exist. As the development team attempts to fix one bug, new
bugs are introduced. While fixing the new bugs, even more bugs are introduced. Under the
pressure of an already blown release date, the team struggles to refactor the design and code
while fixing the bugs.

- The functionality is turned over to a quality assurance group for quality testing. They find
bugs and report them. The development team can’t proceed with new development until these
bugs are fixed. However, the Product Owner expected that the team delivered quality
functionality and has them working on new functionality. The team is torn between new work
and bug fixing.

- To improve quality, I’ve often had to implement the engineering practice that the
development team owns the code forever. I’ve found that this practice incentivizes everyone
to write quality code. The team is motivated to write clean, understandable, maintainable,
sustainable code. The team owns the code and either can be proud of it or it will cause them
grief forever. Some organizations feel that freeing teams of the responsibility for maintaining
the code lets them proceed to new work. In reality, this simply moves fixing the code to
people who don’t understand it.

Overview of the Scrum Methodology

35

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

When the team owns the code forever, management knows that the team can’t be assigned to new
functionality iterations until the code is of adequate quality to ship. Management thus resists
pressuring the team to build more functionality during iterations than can be built with quality. This
simple practice puts both the development team and management on the same page, dedicated to the
same goal.

This practice is a strong management statement for quality. The potentially shippable product
increment says that the team is authorized to cut functionality width or depth during the Sprint as
long as the quality is shippable. We all know that when we pressure developers to put more
functionality in by a certain date that we are going to pay for it later. The payment is buggy code that
causes customer dissatisfaction, diminished product reputation, and dissatisfied and dispirited
developers.

Overview of the Scrum Methodology

36

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Structure of Phases, Paths, and Activities
The Scrum methodology consists of Phases, Paths, and Activities. Phases are groupings of work
that achieves a common purpose. Paths are different ways of structuring the Activities within a
Phase based on project characteristics. Activities are the Scrum’s work, the stuff that actually
constitutes the Scrum methodology. Each Activity has a “Responsible” for party, the Scrum role
that is responsible for the successful execution of that activity. For instance, the Product Owner is
responsible for initially estimating product backlog (an Activity within the Planning Phase).

Many methodologies use a “task” structure to delineate the lowest level of work, such as “Build A
Class Diagram,, “Instantiate a Sequence Diagram,” and other detailed pieces of work. Scrum
doesn’t include tasks. The theoretical underpinnings of Scrum require such work to be determined
empirically by those responsible for the work, as the work occurs. For example, a Scrum
Development Team is responsible for turning selected Product Backlog into an increment of
working product functionality. The actual tasks to do so are derived by the Development Team for
its own purposes. The responsible parties figure out how to do the work and then carry it out,
modifying the tasks as they work.

Think of Phases as groupings of like Activities with Paths through the Activities depending on the
type of project.

Overview of the Scrum Methodology

37

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum Phases
Planning

The Planning phase’s purpose is to establish the project vision, to establish expectations, and to
acquire funding.

The vision states how the business or customer environment will be different when the product being
built is successfully installed. The vision may include phasing. For example, one healthcare software
vendor envisioned “teleradiology,”, a vision based on the introduction on digital imaging equipment
such as MRI’s and x-Rays. The vision was of a filmless radiology operation where collaborating
radiologists worldwide could review, discuss, markup and reach conclusions regarding the same
digital image of the patient.

The purpose of the vision is to establish a common context within which decisions can be made. The
vision is used to acquire funding by showing what benefits will accrue over time if the vision is
successfully implemented, and what the attendant costs will be. A vision consists of words, models,
and spreadsheets, and is usually relatively short.

If the expectations set by the vision appeal to sources of funds (capital committees, venture
capitalists), funding may be provided to proceed with the project as stated in the vision.

Once Planning is done, funding, an initial Product Backlog and release plan, high level technical and
business architectures, and expectations are in hand.

Overview of the Scrum Methodology

38

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Staging
Projects have different characteristics. Some
are large and have many people. Others are
small but have several teams working to build
very complex software. Some projects require
significant work at the beginning to establish a
satisfactory development environment. Other
projects are ready to go. The Staging phase
assesses the various dimensions of the project
and creates additional Product Backlog.

There are multiple Phases, or subPhases, in the
Staging phase, each representing a single
dimension of the project that should be
assessed. Based on the assessment, different
Paths may be taken through the subPhase. The
Activities within each Path don’t actually do
project work. Instead, the Activities add and
prioritize requirements into the Product
Backlog. All of the actual work that results
from these requirements is done by the Project
Team during the Development Phase.

The Staging phase builds communication and coordination mechanisms across
the basic unit of Scrum - small, cross-functional, self-organizing teams.

The last subphases in the Staging phase constitute the initiation process, or
getting the project started. Teams are staffed. The Teams get together with the
Product Owner to learn about the project. The Product Owner instills as much
vision and project information as possible to the Team. Sometimes this includes
sending the team out into the target environment so the team acquires a more detailed understanding
of where the system will be implemented. If the Team has never used Scrum before, Scrum process
training is provided to the Team.

Developing
All actual product development is done in the Developing Phase. This phase consists of multiple
Sprints to develop increments of product functionality. Each Sprint starts with a Sprint Planning
Meeting and concludes with a Sprint Review.

Overview of the Scrum Methodology

39

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

When projects are building complex, highly architected software or when multiple Teams will be
working together on the software, Product Backlog to build coordinating models and architectures
are built in the first several Sprints by a single Team. This Team is then distributed to new teams and
provides this product contextual information to each Team.

When upgrades to the development environments are required before Teams can successfully
develop “potentially shippable” increments of product functionality, this work is scheduled for the
first several Sprints by the Product Backlog being given high priority. This environmental work
occurs in parallel with development of actual functionality.

Regardless of the architectural or environmental work required in the initial Sprints, every Sprint
must deliver an increment of working product functionality.

Releasing
The Vision called for releases of product functionality based on a combination of costs, expected
benefits, dates, and available functionality. At the end of every Development Sprint, the Product
Owner assesses whether such functionality is available and if the time if right for it to be released. If
the Product Owner determines to create a release, the Releasing Phase is entered.

The Releasing Phase consist of two types of Activities. The first Activity adds requirements to the
Product Backlog that will turn the “potentially shippable” increments of functionality into a real
shippable product. Any shortcomings in the Development Phase Sprints are addressed at this point.
The second Activity is one or more Sprints of work that create the releasable product.

Overview of the Scrum Methodology

40

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1 Planning
This section addresses how to fund a wicked problem when you don’t know what
the solution will be? How can a capital committee allocate funds under these
circumstances and be comfortable that the risk is under control and the ROI is
predictable. The Product Owner is responsible for planning the project. Within large
organizations, this person is often a department head, such as the head of
manufacturing or inventory control. Within product organizations, this person may
be a product manager, such as for a software product. Sometimes this person is an
IT project manager for internal IT infrastructure projects, such as consolidating
servers. The Product Owner establishes, nurtures and communicates the product
vision. He achieves initial and on-going funding for the project by creating initial
release plans and the initial Product Backlog.

Why Plan
Planning is done to establish a vision that is shared between the visionary, the funders, and the
people working on the project. This vision binds all of these people together in evaluating the
progress of the project, and in making correct decisions within the context of the vision. The plan
also makes certain assertions regarding the value of the project and what timetables need to be met
to deliver this value. This becomes the benchmark against which the funders and management
evaluate the progress of the project.

Planning Basics

Planning the project usually takes one short Sprint of fifteen days to complete. All of the Scrum
practices of backlog, Sprints, and daily Scrums apply to this planning Sprint. The output from the
planning Sprint is the project definition document and a prototype, or proof of concept, of one part
of the functionality running on the technology.

All project planning starts by defining what system is to be developed and why it is important to
develop it.

Traditional project planning then develops a detailed picture of all of the functionality and
technology that is required to deliver the envisioned system. A plan defining all of the activities and
tasks that are required to build the system functionality and technology is then prepared. These tasks
are then staffed and scheduled. The resultant plan is used to control and manage the project.
Management causes people to do the planned work.

Scrum project management relies on the agile practices of emergence, self-organization, and
iterations. The system is being built in a complex business environment on complex technology.
Although the system may be envisioned when planning the project, the functionality and technology
that actually deliver the system will often change during the course of the project. As new business
opportunities arise, the functionality will change. As the users see the functionality, they will change
how the functionality should be delivered. As new technology appears or selected technology proves
not to be viable, technology will change.

Scrum project management only defines the functionality of the system at a high level. Only
functionality that will be built first is detailed, and only to such a level as to make rough estimates.
The detailed functionality is the highest priority to build, usually that which delivers the most value
to the business. These details are rarely defined for more than the first release, rarely more than six
months from project inception.

41

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum project management doesn’t plan and define work for teams. Instead, the teams define the
work for each Sprint at the beginning of each Sprint. The teams self-organize themselves and the
work, and then manage themselves in the performance of the work. There is no detailed work
planning in a project plan, only a list of expected functionality.

Planning Paths

1 Planning

htaP epyT scitsiretcarahC

A1
dednufnu,weN

stcejorp

niamod,serutcetihcraenilesabsehsilbatsE
dnastnemeriuqer,golkcabtcudorp,sledom

eriuqcaotliatedhguonesecudorP.noisiv
.gnidnuf

B1
dednuf,weN

stcejorp
evirdotgolkcabtcudorplaitinisehsilbatsE

stnirpS

C1
ydaerlA

dnayawrednu
stcejorpdednuf

evirdotgolkcabtcudorplaitinisehsilbatsE
tnirpStsrif

D1
dexif/ecirpdexiF
lautcartnocetad

tnempoleved

42

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1A New, Unfunded Projects
Newly conceived projects require funding. Before anyone will fund a project, they must understand
the return on investment (ROI) of the project so they can evaluate this project against all other
activities that are also competing for capital and funding. In order to assess the accuracy of the
asserted ROI, they also need to understand enough details about the project as to determine its
vision, risks, and underlying assumptions.

The purpose of the plan for a new, unfunded project is to lay out a investment vision against which
management can assess and frequently adjust its investments, to lay out a common set of
understandings from which emergence, adaptation and collaboration occur, and to establish
expectations that reports will be measured against.

43

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1B New, Funded Projects
Some projects have already been approved and funded, but have yet to get underway. Or, perhaps a
project has tried to get underway but the complexity of the technology or requirements have
precluded any progress.

In this case, find someone who can represent the customers and users. Ask this person to take on the
role of Product Owner and to identify some initial, high priority requirements. Then appoint a
ScrumMaster and start by conducting Daily Scrums. A starter Product Backlog consists of some
business functionality and the technology requirements. To implement this functionality, the team
designs and builds an initial system framework with the selected technology. The team implements
user functionality into this framework. The team may have to connect the functionality to a
preliminary or existing database. Under these circumstances, the goal for the first Sprint is:

“Demonstrate a key piece of user functionality on the selected technology.”

When the team defines the Sprint Backlog to meet this goal, it includes tasks necessary to
build the development environment, set up the team, define code management and build
management practices, implement the target system technology on a test platform, and build the
functionality. This constitutes a pretty full Sprint

This initial Sprint has two purposes. First, the team needs to settle into a development
environment in which it can construct functionality. Second, the team builds a working part of the
system to demonstrate to the Product Owner and customers within thirty days. Demonstrating
functionality this quickly invigorates Product Owner and customer involvement and thinking. They
realize the system is for real right now and think, “Now that the system is really being built, we’d
better decide what do I want from it. I’d better get involved!” The first Sprint gets the team, Product
Owner, and customers into a regular thirty-day rhythm of defining and delivering, defining and
delivering.

While the team is working on the first Sprint, the Product Owners builds more Product
Backlog. The Product Backlog doesn’t have to be complete; it only needs to include enough top
priority items to drive the next few Sprints. As the Product Owner and customers get a feel for
Scrum, they start taking a longer view of Product Backlog. If a system or product vision isn’t
available, the Product Owner and customer will forge one. They will then construct Product Backlog
on the basis of this vision.

44

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1C Underway, Already Funded Projects

Sometimes you want to use Scrum to get an existing project or product development focused,
productive, and generating code. A team is often struggling with changing requirements and difficult
technology. The team may not have built any functionality yet, but instead has tried to deliver
requirements documents or business models. A development environment already exists and the
team is familiar with the targeted technology.

In this case, find someone who can represent the customers and users. Ask this person to take
on the role of Product Owner and to identify some initial, high priority requirements. Then appoint a
ScrumMaster and start by conducting Daily Scrums. Find out what is impeding the team. These
initial Daily Scrum meetings may go on for hours. The team talks out its problems, including why it
can’t build software and often how frustrated it is. Challenge the team: “What can you build in the
next thirty days?” You want to see team work together to build something, to prove that it can
develop software. Try to get the team to focus on functionality that is important to the Product
Owner. What really impresses the Product Owner, though, is that the team can build something at all
within thirty days. In many instances, the team has gone for months without producing any
functionality and the Product Owner and customers have given up. The most immediate goal is to
get the team to believe in itself, and to get the Product Owner and customers to believe in the team.
The Sprint Goal is:

“Demonstrate any piece of user functionality on the selected technology”

At the Daily Scrums, identify other impediments to the team’s progress and help to remove
them. If the team is able to build functionality during the first Sprint, the Product Owner and team
collaboratively determine what to do next at the Sprint Review and Sprint Planning meeting. I have
never had a team fail to meet this challenge.

45

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1D Fixed Price/Fixed Date Projects

Fixed Price/Fixed Date projects are the consequence of the belief that the functionality, quality,
delivery date, and cost for developing a complex system to meet complex requirements can be
predetermined and contracted for between a customer and provider. If the technology proves more
difficult than the provider expected, the provider is expected to eat the overrun. If the requirements
need to change because the customer has to change their mind, the customer is expected to pay for
this through “change control” mechanisms and additional funding. Both sides attempt to ensure that
they will win, or if they lose that the loss won’t be out-of-control.

Agile projects are constructed based on the acceptance that it is impossible to predict complex
projects. The project starts and the customer and provider learn together. The goal of the project is
not to deliver functionality, but to deliver business value. Agile projects openly accept the fact that
much of the initially scoped functionality may be irrelevant to delivering business value and may be
unused by the customer despite its cost. The unneeded functionality will also always require
maintenance, sustaining its unnecessary costs well into the future.

However, many customers still think in terms of the fixed price/fixed date contract and they
construct their request for proposals, evaluation of capabilities, and contracts in these terms. In these
cases, an organization that is skilled in agile development needs to respond within the customer
context and understanding, while providing room for the customer to learn and take advantage of
agile principles if they are so inclined. Regardless, the practices in agile development will make for
a more productive project with more functionality for the cost

The primary difference between planning a fixed price/fixed date contract and a new, unfunded
project is the degree to which the system must be analyzed and specified prior to beginning the
project. It is incumbent on any bidder, regardless of the development process they will employ, to
fully understand the technical and business architecture for delivering the proposed system, and the
detailed entities that will inhabit these architectures (classes, methods, sequences, interfaces,
interactions).

46

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1D Fixed Price/Fixed Date Projects

47

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.1 Define the Project

Product Owner

The first step is to prepare the project definition. This is the vision that will be shared by the funders
of the project and those developing the system. The project definition is a rallying point that
provides context and focus to the project teams. This vision guides them as they make decisions
about the functionality and design of the product. Scrum relies on emergence of details, so the
project definition is kept to the conceptual and contextual. It should not be lengthy and definitive,
but suggestive and guiding. It should set forth expected outcomes and possible risks and issues.

One suggested format for project definition is:

� Vision. What are we trying to do? What will the business operation or product look like when
the project is completed? How will it be better and more valuable? Why is this worth doing?
Why is this vision unique and valuable?

� Business Operations. How does this project change our business? How does this improve our
business? How does this affect our competitiveness? How does this affect our bottom line?

� Releases. Identify the implementation plan for this vision. What software releases are required to
support the implementation plan and what is their general capability and functionality? What
changes to the business must be affected? What change management process will be employed to
implement these changes.

� Functionality and business architecture. What is an overall business flow with this project
implemented? Where are the significant changes? What functionality is required to make these
changes? To what degree do the significant stakeholders and others impacted by these changes
agree to the vision?

 To describe the anticipated system in enough detail that it can be understood,
communicated and justified for funding. Since the system will be developed empirically, using
iterations to build the most appropriate increments of functionality, the project description lays out
the vision of the product or system, not the detailed requirements. Goals are established for initial
Sprints and releases, and functional and nonfunctional requirements that will attain those goals are
enumerated, but not detailed.

 The project has an advocate who is able to clearly articulate the purpose and
vision of the system, as well as move this project plan through the funding process. This person often
becomes the Product Owner.

 Don’t overspecify the system to be developed. The exact requirements that will
satisfy the business needs will evolve as the Product Owner, stake holders, and development team
learn more about the business needs, ways of satisfying them, the changing business environment,
and the capabilities of the technologies.

48

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.1 Define the Project

� Target Technical architecture. What is the architecture of the technology that will implement
this required functionality and business architecture? What is the reliability and stability of this
technology, both individually and operating as a system?

� Development infrastructure and technology. What is the development platform that will be
used to develop this system? What is the reliability and stability of this development platform?

� Return on Investment. What benefits will be accrued by the business as a result of this project?
What measures will be performed to assess these benefits as the project functionality is
implemented? How will these measures be isolated from affects other than this project? What are
the costs of this project? How will they be measured?

� Development. How will these products be developed? Who will do the development, how will
the teams be arranged, where will the engineers be recruited or located, how will quality be
assured, how will maintainability, sustainability and enhancability be addressed, and what
development process will be followed? List all assumptions and risks.

� 1st Year Plan. How do you plan to execute for the first year? Identify milestones, work backlog,
and product releases. Prepare spreadsheets of all expenses and revenues. Identify each line item.
Summarize for every quarter. Identify all assumptions and risks by quarter.

� 2nd Year Plan. How do you plan to execute for the second year? Identify milestones and product
releases. Prepare spreadsheets of all expenses and revenues. Identify each line item. Summarize
for every half-year. Identify all assumptions and risks by half-year.

Questions that need to be answered in the project definition include: Will the project improve
productivity? Will the project help increase user satisfaction and increase the number of return
buyers? Will this project increase the number of repeat sales? Will this project improve market
share? Will this project help reduce the prices from suppliers? Why should this project be
undertaken? What is this project all about? How will this project create the results that are expected
and how will those results be measured? How much will the project cost? What is the schedule for
costs and returns on investment?

49

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.15 Define Architecture

Product Owner, Team

 Architectures describe the business aspects and technical aspects of the planned
system. They are prepared using modeling or drawing tools at the organization and represent a vision
of the planned system. The business architecture is used for implementation planning. The systems
architecture is used for coordinating development if multiple teams are used. Both are prepared with
enough detail to guide decision making and management of the project. The architecture diagrams
are also used in project reporting to demonstrate the parts of the system developed each Sprint.

 Business and technical staff with adequate domain knowledge are available
to the Product Owner, to collaborate in creating architectures that will successfully deliver the system
visions.

 The architectures are developed in too much detail. If this is done, excessive work is
being done in the planning phase. Also, this architecture detail will stifle and restrict emergence as
the project progresses. Detailing these architectures should be done during the project Sprints, as the
system emerges.

 To describe in business and technical terms the overall components,
interactions, and flows of the system. The models used to describe the architectures are for
informational, decision making, and informational purposes. The models are not used to decompose
the system progressively into detailed code. That type of decomposition is not used in the Scrum
development process.

Both the systems and business architectural models are used to envision the system as it is intended
to be operated and implemented. Both of the models can also be used to track the progress of the
project by highlighting progressively the parts and components that are completed or partially
completed every Sprint. This augments the Product Backlog and ROI reporting at a visual level.

50

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.15 Define Architecture

An example model of a business architecture is:

An example model of a systems architecture is:

51

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.16 Design System
Product Owner, Team

 To further detail the architectures of the system so that detailed costs estimates of
the system can be constructed. The designs are complete both to entities, classes, methods,
sequences, interactions, and subsystem development. Enough detail is provided to understand what
the system is and how it will be constructed.

 Funding cannot be acquired without an initial estimate of costs and that
this estimate of costs will rely on change control or detailed collaboration mechanisms to balance
emergence with cost and date targets.

 The cost of this effort exceeds that which would occur during iterative, incremental
delivery of design since this cost is sunk regardless of changes. This type of development only can
avail itself of the benefits of increments and iterations, while the benefits of collaboration and
emergence are minimized.

 Decompose the architectural models previously constructed into all of the
detail artifacts required to create an effective estimate of system development.

52

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.2 Build Product Backlog

Product Owner

The product backlog is a list of functions, features, technology, and capabilities that the product
might have. This is not a task list, but a list of things that require work to be implemented in the
product or system. Everything that can be thought of for the product is in this list. The list is
emergent, with some items disappearing and others popping up over time. Emergence happens
because more is known about the product as it is developed, and the business environment within
which the product will be implemented changes.

The product backlog is prioritized. Higher priority items usually have a higher ROI potential than
lower priority items. Sometimes lower priority product backlog receives a higher priority if it must
be implemented first, indicating a dependency of an otherwise higher priority item. Product backlog
items often change priority over time to reflect the impact of emergence. As the users see product
functionality, they often change their minds about how the functionality works or what they want
next.

 No item is too insignificant to be on the product backlog; however, some items are very low priority
compared to others and may never be implemented.

The product backlog consists of three types of items:

1. Product functionality - what functions could the system perform to deliver the value anticipated in
the product vision.

 To develop an initial list of the what the product will consist of. This includes
functionality, such as “check balance prior to disbursing cash”, to non-functionality, such as “system
will provide subsecond response time when 100,000 simultaneous users access functionality”, to
environmental, such as “multiple distributed teams will need a shared team environment.”

 The product backlog items can be derived from the vision of the system or
product. The items that are most important should be prioritized to the top of the list, with items of
diminishing importance ranked accordingly. Think through the higher priority product backlog in
more detail, breaking down items until they are well understood.

 The product backlog should be painted in broad strokes. Only detail the items that are of
highest priority, that require delivery first to demonstrate the value and probability that the product or
system can actually be built. Lower priority functionality should be coarse grain; high priority
functionality should be fine grain.

53

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.2 Build Product Backlog
2. Nonfunctional requirements - for the product to deliver the necessary value, what operational
aspects must it demonstrate, such as performance, security, reliability, and cost requirements.

3. Environmental requirements - what capabilities and environments must be in place for the product
to be developed and delivered. For instance, if the teams have never developed n-tier object-oriented
systems previously, significant training, tool investment, and development environment investment
must occur early in the development iterations.

Inspect the product vision. Bring together all of the stakeholders of the system and brainstorm what
is expected of the product. Write down all of the items. When more details are available about an
item, reference those details so the they can easily be available to the team. Keep at this work until
you are comfortable that a pretty good description of the requirements for the system are listed.

This list is skeletal. This activity is not intended to analyze the system, merely to scope and list its
requirements. The actual analysis is performed during the iterations of work performed later in the
project. This activity queues up “what” the system should look like. The development teams will
analyze exactly how this “what” operates.

While prioritizing the product backlog, ensure that nonfunctional requirements are high priority. This
ensures that the early functionality is developed within the context of the operational and
nonfunctional requirements of the system.

While prioritizing the product backlog, ensure the
environmental requirements are high priority. The
team requires an environment within which to build,
test, and deploy the system.

Figure 4 is an example of some product backlog
developed to start the project to implement the
website for the AgileAlliance organization.

54

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

The Product Owner work with the business departments and the development organization to
develop estimates for the amount of time it will take to build the functionality. These estimates
include the effort to analyze, design, develop, document, and test the functionality. The estimates are
usually in person days.

Use the people who will be staffing the project teams to make the estimates. If they aren’t known yet,
have people of equal skills and project domain knowledge make the estimates. Do not have experts
or outsiders make the estimates. Their estimates are irrelevant to those who will actually be doing the
work.

The accuracy of the estimates decreases as the priority the requirement in the product backlog
decreases. Higher priority product backlog is more important to the business, will be developed
sooner, is likely to have been thought through, and is likely to be implemented. Lower priority
product backlog items are more susceptible to change. Before they rise to the top of the product
backlog for selection in a Sprint, business conditions are likely to change, the users are likely to
change their minds, and the technology may shift. Less time is spent trying to think through the
lower priority product backlog because it is less likely to happen. Scrum project management tries to
focus efforts on work at hand, only keeping a general view of future work for context.

1.3 Estimate Product Backlog

Product Owner, Team

 To gain an understanding of the amount of effort to develop the product or system. As
estimates are thought through, a more detailed understanding of each product backlog item is
required. Make more effort to reach this estimate for higher priority than lower priority items. The
lower priority items may change prior to being developed.

 People with similar skills to the team that will be developing the product or
the team itself are available to assist the product owner. The estimate emerges in a dialog between
them, as the product owner describes the requirements in as much detail as is required to make the
estimate. These details are captured and related to each backlog item.

 Too much time is spent estimating. The goal of the estimates is to gain a general
understanding of the cost of the system or product. This is used to determine whether it is economic
to develop it. Do enough, but not too much.

55

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Estimating is iterative. Estimates change as more information emerges. If the project managers can’t
get a believable estimate for a top priority backlog item, its priority should be lowered. Since not
enough is known about the functionality to create a believable estimate, usually not enough is known
about it to start work. As an alternative, the item can be kept as a high priority, but reclassified as an
issue. An example of an issue is, “Salesmen need to respond to orders with estimated ship dates
within ten minutes; what functionality is needed to support this requirement?” The work to turn this
issue into required functionality might take ten days; estimate the issue at ten days. If an estimate for
functionality predicted for the next six months has an estimate greater than 10 days, break it down
into multiple product backlog items

Lower priority product backlog is vague, a placeholder so that the team thinks more about it as its
priority increases. The estimates are not very reliable, only reflecting the level of thought the team
puts into understanding how that functionality might be implemented on the initially selected
technology. Estimates often range from ten to forty
days for lower priority backlog items.

Figure 4 is an example of some product backlog
developed to start the project to implement the
website for the AgileAlliance organization.

1.3 Estimate Product Backlog

56

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.4 Adjust Backlog Estimates

Product Owner

 The estimated time for each product backlog item can be adjusted by a
“complexity factor.” The complexity factor reflects the degree of complexity that will affect the
estimates. In one instance, the product owner doubled all estimates because the team was completely
new and had never even worked at the company prior to this project.
The guidelines for adjusting estimates to reflect complexity are just that: guidelines. This is not a
precise science. Complexity adjustments are used solely and simply to get the person estimating the
work to consider the complexity.

Two factors that complicate the product
backlog are requirements and technology.
How well are the requirements for that
product backlog item known? How much
agreement is there about what the design and
implementation of that item? How difficult
and stable is the implementation technology?
Some product owners believe that they take
these factors into account when making the
initial item estimate. It is preferable to keep
this part of the estimation separate. The
appropriate complexity factor for each
product backlog item can be selected from
Figure 5 and put it into the complexity

 To adjust the product backlog estimates to reflect any factors reduce team
effectiveness. Scrum assumes an optimal work environment. This activity forces an understanding
that suboptimal product factors have a cost.

 This activity is not mechanical, plugging in factors. Instead, it is intended to
provide cost awareness. Every decision regarding the team working environment has an impact on
their productivity and an attendant cost. If the management is aware, this activity is merely a
reminder of these costs. If management is not aware of these costs, this activity provides a monetary
cost to suboptimal environments.

 Don’t quibble about the factor values. They are generalized and not intended to be
precise for every situation.

57

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

column for each item. Or, a general complexity factor can be determined and applied to all product
backlog items.
Generally speaking, the complexity factor
should only be applied to a known product
backlog horizon. That is, if it is possible
that the team environment will change,
don’t apply complexity factors past that
horizon. Diminish the impact of the
complexity factors as the team can be
expected to master the technical and
business domain.
Three more complexity factors are added
to items in the complexity factor column.
These reflect the drag on team velocity, the
adequacy of the working environment, and
overhead for multiple team projects.
Again, these are guidelines for adjusting
estimates to reflect complexity. This also is
not a precise science. Complexity
adjustments are used solely and simply to
get the person estimating the work to consider what is negatively affecting team productivity and to
prompt the project managers to consider making changes. The appropriate drag these complexity
factors put on productivity can be selected from the table in Figure 6.

Drag on team productivity: The project managers estimate that the team will take 7 days to turn a
product backlog item into working functionality. However, this productivity is decreased when teams
haven’t worked together before, when they are not familiar with the technology that they will be
using, and when they aren’t familiar with the business domain. Figure 6 provides an estimate of the
amount of drag these factors can have on team productivity.

1.4 Adjust Backlog Estimates

58

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Adequacy of working environment: Scrum works best when everyone on a team is together in an
open environment with adequate work and conference rooms. Productivity is adversely affected
when this type of an environment isn’t available. Although the effect is variable (separate doors with
offices in different parts of the building and city are worst!), a 0.2 factor to the complexity column is
usually appropriate to add if the environment is sub optimal.

Multiple teams: The last adjustment is based on management and communications overhead caused
by multiple teams working together on the same project. Despite best efforts to group a team’s work
to maximize cohesion and minimize coupling to other teams, an additional factor of 0.1 can be
consider when there is more than one team.

Summing The Impact: All of these complexity factors are summed, added to a 1.0 base, and
multiplied by the raw effort. The overall
estimate of work for a release or the
entire product backlog is the sum of
these multiple product backlog items.

Ó(raw effort * (1.0 + complexity factor +
drag + working environment + multiple
teams)

The product backlog spreadsheet for the
AgileAlliance website in Figure 7 is
updated for complexity.

1.4 Adjust Backlog Estimates

59

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

The Product Owner identifies the functionality that will probably constitute system releases. The
functionality is a meaningful set of related functionality that will cause a business change or provide
a useful set of customer functionality. The business change is expected to improve operations, to
reduce costs, or to improve revenues. The release implementation date assumes specific business
conditions for these improvements or benefits to occur.

To project these releases, The Product Owner groups the product backlog into several releases. The
date of each release is then estimated by dividing the effort cost per day into the total estimated days
of effort to develop and implement that release’s functionality.

(Adjusted effort to develop and implement selected functionality)/ (Available effort (number of
developers * productive hours/day)

The Product Owner then adjusts the functionality or available effort to create a release with
functionality on a date when the return on investment can be expected to create the expected value.

1.5 Plan the Releases

Product Owner

 The system consists of functionality that can be parsed into releases that can be
logically absorbed by the customers and users.

 To realize benefits from a system after developing some of its intended functionality,
releases are planned to implement levels of functionality that will provide users and customers with
incremental benefits that outweigh the cost of implementation.

 Packaging functionality into a release costs money and effort, both to the development
teams and to the customers and users that have to implement and learn how to use it. Ensure that the
benefits from releases more than offset the costs.

60

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

A visual depiction of the release plan
superimposed on the product backlog
is shown in Figure 8. This is done by
inserting a line that says “release”
after the functionality. All
functionality between that line and
the prior release line (or top of the
product backlog) is planned for that
release.

The release plan is only an estimate.
At the end of every actual Sprint,
these lines will be adjusted based on
actual team productivity and any
changes in business conditions.

1.5 Plan the Releases

61

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.6 Prepare Bid

Product Owner

 The bid consists of spreadsheets that lays out the costs and the benefits. The
assumptions that have been instrumental in laying out the plan, vision, architectures, and estimates
are now made explicit. The details underlying the expectation of realization of benefits are also made
explicit. In the detailed analysis of the viability of proceeding with the project, the spreadsheet of
costs and benefits with all underlying assumptions quantified is essential.

 The product owner has performed adequate analysis of the marketplace,
customer operations, and users to accurately quantify benefits. The Product Owner is adequately
aware of the costs of development, including level and cost of personnel and overall ongoing costs of
technology, to quantify assumptions. That the Product Owner is able to quantify ongoing
maintenance, sustenance, and enhancement costs which will inevitably offset long term benefits.

 The bid is as good as the competence of the Product Owner and the domain experts
available to him or her in preparing the bid.

 The bids are somewhat different if the system will be a commercial product
developed by an Independent Software Vendor (ISV), or an internal development organization for the
consumption of the internal organization. This activity discusses the spreadsheets required for an
ISV. With some minor adjustment of terms, the same spreadsheets are appropriate for internally
consumed systems.
Prepare the following spreadsheets:

- Spreadsheet 1: revenue and expense projections for the development, deployment, enjoyment, and
operation of the system throughout the customer base. For an internal system, benefits and costs
replace revenues and expenses.

- Spreadsheet 2: a list of assumptions and quantification of the various assumptions underlying the
costs and benefits.

- Spreadsheeet 3: an analysis of the costs and benefits in alternate scenarios. Each scenario identifies
the quantity for one or more specific assumptions and shows how the development and
implementation of the system will play out under those scenarios.

The spreadsheets on the following pages represent examples from the book, “Lean Software
Development: An Agile Toolkit”, Mary Poppendieck Tom Poppendieck, to be published by Prentice
Hall in June, 2003. These fine examples are in the Scrum methodology through the permission of the
Poppendiecks.

62

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Spreadsheet 1: cost benefit analysis for development and
operation, or expense revenue analysis for development and sale.

1.6 Prepare Bid

63

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.6 Prepare Bid

Spreadsheet 2: itemization and quantification of assumptions
underlying cost benefit spreadsheet.

64

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.6 Prepare Bid

Spreadsheet 3: Summary of cost benefit model under varying
conditions, with the conditions identified by assumption

65

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

1.61 Prepare Fixed Price/Date Bid

Product Owner

 Bids are sometimes required to include a fixed date of delivery and fixed costs for
delivery. Such bids usually require a detailed list of functionality and the architecture for delivering
the functionality, along with all underlying assumptions. The bid spreadsheets developed in Activity
1.6 are the basis of such bids. However, for a fixed price/fixed date bid they are much more
extensive. All of the costs are specified along with all of the functionality. The artifacts underlying
the functionality must also be assessed, measured, and quantified.

 The mechanisms for preparing fixed price/fixed date bids traditionally is
applicable to agile development processes and Scrum. However, rather than bidding at the task level
by including costed out PERT charts, the Scrum bid assesses workload at the requirements and
nonfunctional requirements level.

 Although Scrum is an adequate mechanism for addressing fixed price/fixed bid
contracts, the Scrum methodology doesn’t contain any processes or mechanisms for change control.
Change control is the mechanism for modifying the emerging expectations (sometimes called Scope
Creep) of the customer. This is particularly important with Scrum because of the incremental
delivery and frequent interaction with the customer with live functionality.

 To prepare a fixed price/fixed date bid that, perform the following:
• Develop vision, value statement with prospect.
• Create product backlog of functional requirements and nonfunctional requirements to meet system
and application characteristics.
• Insert release backlog.
• Prioritize product backlog
• Review and revise with customer in light of vision and value statements.

Then,
• Create enough architecture and design to develop estimates for each product backlog estimate.
• Use all estimating and scaling factors described in “Planning the Release.”
• Discuss with prospect how value will be delivered incrementally.
• Discuss with prospect that they are permitted to change product backlog content and priority in
collaboration with the team as long as total estimates stay the same.
• Submit bid based on product backlog.

Through the above process, the prospect is educated to the opportunities of agile development, where
they can iteratively select top priority functionality development to incrementally deliver value. The
prospect that a subset of the identified functionality can deliver the majority of the value to the
prospect is another possibility that should be presented. If this is successful, the bidder and the
prospect can enter into a collaborative, win/win relationship rather than the contractual win/lose
relationship of a fixed price/fixed date contract.

66

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

As the project progresses, reports on its successful delivery of functionality are expected by the
funding source. Since funding is usually provided in expectation of offsetting benefits and adequate
return on investments, a way of measuring, tracking, and reporting these benefits and costs is
developed, used to gain funding for the project, and used to measure the success of the development
and successive implementations of releases of the system.

1.7 Fund Project

Product Owner

 The plan is presented to the funding source, such as an organization capital
committee or a venture capitalist. The plan has enough detail for the funder to understand the system
and its intended purpose, as well as derive enough confidence in the plan and the Product Owner to
justify the funding of such a project. As part of this activity, the Product Owner constructs ROI
gauges that will be used to report on the incremental delivery of benefits as compared to costs so that
the funding source can track the planned return on investment.

 The funding source believes that technology projects are manageable and
that plans can be executed through he use of iterative, incremental techniques in the Scrum agile
process. Some education may have to be provided about such processes are part of presenting the
plan.

 Particularly in such hierarchical environments as Department of Defense procurement,
the agile concepts that lend themselves to ROI measurements and emergent planning are unknown.
These environments may be inappropriate for establishing ROI gauges.

67

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2 Define Increment of Shippable Product

Every Sprint creates an increment of functionality that is potentially shippable. The contents and
characteristics of this increment depends on the type of system and functionality that is being
developed. This activity defines the standards, conventions, templates, and contents of each product
increment.

For more details, see the description in the Artifact section of the methodology.

What is a Potentially Shippable Product Increment

A number of people have questioned how Scrum and other agile processes support mission critical,
FDA approved, or other varieties of software systems. These questions have arisen because the
vanilla version of the most popular agile processes describe the construction of software that is
single use; that is, it is used within the organization that develops it, with the development mostly
done by the internal Information Technology (IT) organization.

Most agile processes require development teams to built an increment of product functionality every
iteration, or Sprint. Scrum and Extreme Programming require that this increment be potentially
shippable. This usually requires that the increment consist of thoroughly tested code that has been
built into an executable, and the user operation of the functionality is documented, either in Help
files or user documentation.

If the product increment that is created during the Sprint has more exacting use, the development
organization usually defines the additional product requirements as standards or conventions. For
example, the Federal Drug Administration (FDA) must approve a product that will be used in life-
critical circumstances by in numerous health care settings if the product is to be used in the United
States. As part of the approval process, the FDA checks that specific information regarding the
product is provided, such as requirements traceability and specific functionality operation. For each
increment to be potentially shippable, these additional facets of the product must also be developed –
so that each increment of the product is potentially ready for FDA approval.

Similarly, some products require that performance requirements be modeled and the performance
demonstrated mathematically, not just through statistical measurement of the actual system. The
model with all required rigor is thus an additional part of each iteration’s potentially shippable
increment.

The phrase used in agile development for such an iterative, incremental process is “sashimi”, a thin
slice of a product which contains all aspects of the final product. The word sashimi is related to
sushi; one slice of sushi is similar to all other slices.

A development team must have excellent engineering
practices and tools to consistently develop a truly
potentially shippable product increment. See Phase 4:
Development Environment, for evaluating and staging
these practices, as required.

68

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

htaP epyT scitsiretcarahC

A2
lanretnI
erawtfos

tnempoleved
noitatnemucoddnagnitsetllA

B2
laicremmoC

erawtfos
tnempoleved

resu,noitatnemucod,gnitsetllA
noitubirtsiddna,slaunam

C2 lacitircefilADF
dnanoitatnemucodADF
ytilibaecartstnemeriuqer

D2 lacitircnoissiM ytilibaecartstnemeriuqeR

E2
egakcaP
noitceles

airetircnoitcelesegakcaP

2 Define Increment of Shippable Product

69

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2A Internal Software Development

Beyond internally and externally tested, working code, this includes all
artifacts such as documentation, traceability, models, and simulations.

If all artifacts and documentation required by this organization haven’t been fully defined and aren’t
well known to the development team, put the following item as a top priority Product Backlog:

“Define all documentation and artifacts that are part of each increment of product
functionality”

70

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2B Commercial Software Development

Beyond internally and externally tested, working code, this includes all
artifacts such as documentation, traceability, models, and simulations.

If all artifacts and documentation required by this organization haven’t been fully defined and aren’t
well known to the development team, put the following item as a top priority Product Backlog:

“Define all documentation and artifacts that are part of each increment of product
functionality”

71

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2C FDA Life Critical Development

Beyond internally and externally tested, working code, this includes all
artifacts such as documentation, traceability, models, and simulations.

If all artifacts and documentation required by this organization haven’t been fully defined and aren’t
well known to the development team, put the following item as a top priority Product Backlog:

“Define all documentation and artifacts that are part of each increment of product
functionality”

72

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2D Mission Critical Development

Beyond internally and externally tested, working code, this includes all
artifacts such as documentation, traceability, models, and simulations.

If all artifacts and documentation required by this organization haven’t been fully defined and aren’t
well known to the development team, put the following item as a top priority Product Backlog:

“Define all documentation and artifacts that are part of each increment of product
functionality”

73

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

2E Package Selection Development

Beyond internally and externally tested, working code, this includes all
artifacts such as documentation, traceability, models, and simulations.

If all artifacts and documentation required by this organization haven’t been fully defined and aren’t
well known to the development team, put the following item as a top priority Product Backlog:

“Define all documentation and artifacts that are part of each increment of product
functionality”

74

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3 Multi-team or Offshore Development

Some project require a systems and product architecture to be established. If this project is one of
those listed in the below path map, it is recommended that you establish high priority product
backlog to ensure that the first Sprint develops such architectures, in addition to the normal
potentially shippable product increment.

Andy Hunt in The Pragmatic Programmer provides guidance for how to build such an architecture
with working functionality. He calls it a “tracer bullet” approach to incremental development.

The situations where it is recommended that you establish such architectures are identified below:

htaP epyT scitsiretcarahC

A3 tnempoleveDmaetelgniS
ehtpolevedlliwmaetdezimitpoelgnisA

erawtfos

B3 tnempoleveDmaet-itluM
nognikroweblliwmaetenonahteroM

tcejorpeht

C3 tnempoleveDerohsffO
tcejorpehtnokrowehtfollaroemoS

.erohsffoenodeblliw

A common and unfounded observation about agile processes is that they don’t scale. This belief
springs from the early application of agile processes to small projects and the articles describing
these projects.

An agile project described in the literature is optimized for productivity. It often consists of one small
team of experts that is located together in an open space using pair programming with immediate
access to the customer, potential users, and decision makers – and a bunch of other optimizing
practices. Jim Coplien studied the Quattro for Windows (BWP) project at Borland in the early
1990’s. The project employed many of what came to be known as agile practices. Indeed, Jim’s
writings1 about the project were the genesis of some of the agile processes. Jim documented the
following observations comparing what he saw at Borland to industry averages:

1,000,000 lines of C++ code..........BWP..........Industry standard

Time in months.......................31...........>50

Staff................................8............>100

Function points per staff month......77...........2

(James Coplien. Borland Software Craftsmanship: A New Look at Process, Quality, and Productivity.
Proceedings of the 5th Annual Borland International Conference, Orlando, 1994.)

75

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

This type of radical productivity can lead one to extrapolate that a project normally staffed by 500
people could be done with a team of 40 using agile processes. However, as Martin Fowler observed
at the 2003 Canadian Workshop on Scaling (Canadian Workshop on Scaling XP/Agile Processes,
Banff, Alberta, Canada, February, 2003)., “scaling agile projects is the last thing you should do.”
This doesn’t mean that you can’t scale an agile project. It means that you should first do everything
you can not to scale one. Because, in scaling the agile project, you start to diminish the effectiveness
of the very practices that produce such radical productivity.

At this workshop, the question was posed as “how do you scale agile projects?” This question arises
from normal management logic of “If we have a project that we estimate at 1,000 function points in
size and we want it done in 10 months and our staff average productivity is 2 function points per
month, we will need to assign 50 people to the project to get it done in time.”

We flipped the question to read, “how do you take any large project and reduce it to a small, agile
project?” In light of the productivity numbers quoted by Jim Coplien, above, and similar productivity
experienced repeatedly within the agile community, this seems like a more cost-effective and prudent
course of action. For instance, let’s use a modest agile productivity multiplier of a factor of 10.
Recalculating the example project parameters, the agile answer is “If we have a project that we
estimate at 1,000 function points in size and we want it done in 10 months and our staff average
productivity is 20 function points per month, we will need to assign 5 people to the project to get it
done in time.”

Of course, agility can’t just be declared. A lot of work has to be directed by management to produce
an agile project. Management is going to have to be very proactive, getting experts, getting everyone
together, providing the best tools, using agile engineering and management practices, and changing
development approaches. But the payback seems very attractive.

ThoughtWorks is a software development company headquartered in Chicago that specializes in
agile software development, using excellent professionals who are well trained and well equipped.
ThoughtWorks charges a premium for undertaking projects, but the type of productivity indicated
above might mean that any reasonable premium is a bargain.

I have managed projects of a very large scale using agile processes. In these cases, reducing the
number of people through productivity improvements wasn’t an option. I used the Scrum agile
process to manage these projects, taking advantage of the coordinating mechanisms and outstanding
visibility into project progress and problems provided by Scrum.

The worst such project was a Y2K project at a healthcare software provider. Previous attempts to
plan, coordinate, and manage this project using traditional project management techniques had
failed. Scaling is often thought of in terms of number of people involved in a project, since that often
imposes the greatest complexity. The Y2K project had over eight hundred people involved. The
project was also very complex in a number of other dimensions usually not found together in a single
project. These scaling dimensions include the number of organizations involved (350+), the
application (delivery of health care), the criticality (mission critical), the distribution (multiple
departments, multiple organizations throughout North America), the type of software (interpretive
mainframe, client-server, and web), the type of software work involved (new development,
enhancement, maintenance, and bug fixing), the size of the software (over 2500 function points), and
the length of the project (over two years).3

3 Multi-team or Offshore Development

76

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3 Multi-team or Offshore Development
More of my customers have been asking me how to use agile processes, particularly Scrum, to help
them manage offshore development. Since offshore development undercuts many of the practices
that promote agile productivity, I ask them why they don’t just increase the productivity of their
teams by thoroughly introducing agility? It seems that offshore development, with its potential for
lower unit costs (dollars per programmer day), offers management hope that their losses can be
reduced. Since the project is probably going to fail anyway, let’s minimize our losses by lowering our
investment by using lower priced resources. A more optimistic, agile, way of looking at this problem
is to fix the problem at home and increase the probability of success.

The agile process “sweet spot” occurs with teams of seven people, give or take two. These teams can
be extraordinarily productive, measurements indicating a potential increase of productivity at least
35 times more than average. Many inadvertent practices reduce this productivity, including scaling,
so let’s understand how to be as productive as possible before we introduce scaling – which reduces
team productivity for such goals as quicker time to market.

High bandwidth communication is one of the core practices of agile processes. If a team has more
than seven people, they tend to need to revert to written documents and formal models to keep
everyone’s activities synchronized. The best communication is face to face, with communications
occurring through facial expression, body language, intonation, and words. When a white board is
thrown in and the teams work out a design as a group, the communication bandwidth absolutely
sizzles.

Until the late 1990’s, many of the engineering practices have promoted formal documentation of
communications, such as formal models, documentation templates, and computer aided software
engineering tools. Every time I don’t work directly with team members using face to face
communications, however, I reduce the communication bandwidth and introduce the probability of
misunderstandings. When I write something, I’m trying to formulate ideas, understandings, and
experiences into words. When you read my writings, you try to understand what I’m saying within
the context of your experiences and context. In the process of narrowing my bandwidth to words, and
you trying to expand the bandwidth from words to your understanding, a lot is lost. No matter how
well I write and you read. And, most of us are not superb writers and readers.

Many agile practices are aimed at maximizing communication bandwidth. These include:

1. Only using modeling tools and techniques to guide thought processes while on the path to
code. Models are not used to document, but to ensure the rigor of the thought process.

2. Collocating teams so that any team member can readily get face to face with any other team
members to talk and diagram through a problem.

3. Collocating teams in open spaces to maximize the access within the team. If I want to ask a
fellow team member something and I get up from my office, go down the hall, look in his or
her office, and find that they aren’t there, I have both wasted time and lost the thread and
depth of my thinking. More than just time was wasted.

4. Collocating teams in open spaces so team members can see each other, see how each other is
doing and feeling, and hear when a conversation is occurring in which they want to
participate. Privacy is easily obtained by putting on headphones from Bose.

5. Keep iterations to thirty calendar days. Longer iterations require communications persistence
through such artificial techniques as documentation or modeling tools. If the time between
learning a requirement to finishing tested code is kept to under thirty days, the problem and
its solution can usually be kept in the mind.

77

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

6. Keep the team size as close to seven as possible. Seven minds seem able to attain and
maintain a shared mental model of a system and its representation in design and code without
artificial aides such as documentation. Misunderstanding and recording time is minimized.

7. Use a shared code library and rigorous coding standards so everyone on the team can readily
read and understand the system. If modeling documentation is minimized, the code literally is
the design. The code must be easy to read and unambiguous. Variable naming is just one
example of these standards.

8. Use agile engineering practices so the team always knows the status of development. Test
first development ensures that the code reflects the design and that the code is tested as soon
as possible. Source code management, continuous integration, and automated testing suites
find errors as quickly as possible. Refactoring keeps the design simple, elegant, and easy to
debug. Not writing arcane, heroic algorithms keeps code easy to understand. All of these
practices combined mean that when I think I have a working system, it really is a working
system that is sustainable and maintainable. This is called an increment of potentially
shippable (implementable) product functionality.

9. Hold short daily status meetings. Face to face, team members communicate status and
problems with each other. At full bandwidth, the team synchronizes itself daily.

Every scaling practice will reduce the productivity of these teams in support of other goals. Our job
will be to understand how to implement these scaling practices as intelligently as possible, so we
don’t throw out the baby with the bath water.

3 Multi-team or Offshore Development

78

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3 Multi-team or Offshore Development

When it is necessary to use more than one team, each team should select from the Product Backlog
and work on areas that are as highly cohesive as possible and as loosely coupled to any work other
teams are doing as possible. That is, each team’s work should be as independent of any other teams
work as possible. The coordination required should be minimized.

As the teams begin their Sprints, each team coordinates its own work with Daily Scrums. If multiple
teams are utilized, their work should be coordinated also by Daily Scrums, sometimes called Scrum
of Scrums. These higher level coordinating Daily Scrums are held after the lower level Daily
Scrums, are attended by one member of each of the teams to be coordinated, and operate exactly as
any Daily Scrum - except that teams rather than team members are being coordinated.

In some projects, several coordinating levels of Daily Scrums are required. When this is necessary,
the frequency of coordination can diminish in the higher level Daily Scrums (or bi-Daily Scrums, or
Weekly Scrums), because the level of interaction diminishes.

79

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

An example of three levels of synchronization was provided courtesy of Mike Cohn of Mountain
Goat Software, copyright 2003.

3 Multi-team or Offshore Development

80

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3 Multi-team or Offshore Development

When multiple teams are used, the project is still started by using one team, as follows:
1. The Product Backlog is constructed so that important architectural, environmental, and infrastruc-
ture elements are at the top of the Product Backlog - along with some user functionality that will
demonstrate the architecture in operation.
2. A single team starts work on the Product Backlog and persists until a stable enough architecture,
environment, and infrastructure is in place for more than one team to begin operation.
3. The initial team is broken up and used to seed the multiple teams that begin Sprinting.

81

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

4. The Business Architecture is divided into packets of functionality that are highly cohesive and
have as little coupling between each other as possible. Each packet is named for its primary function-
ality.
5. The Product Backlog has another column added to it for describing the business functionality
packet to which each Product Backlog item belongs.
 Each of the multiple teams chooses work for their Sprints from the Product Backlog that is as
orthogonal to that of other teams as possible, that is, Product Backlog from the same packet of
business functionality.
6. The teams begin Sprinting, coordinating the work within teams using the standard Daily Scrum..
7. Coordinating Scrum of Scrums are established to synchronize the work of the multiple teams.

3 Multi-team or Offshore Development

82

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3A Single Team Development
All requirements for single team development are defined in Phase 4: Development Environment.
Single teams are recommended as their productivity is higher than any other development structure.

83

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3B Multi-Team Development
Multiple teams require mechanisms to coordinate their work. Dependencies between the teams must
be minimized and the teams require a shared work environment wherein ongoing builds and tests can
be employed to test the completeness and stability of the system. In general, the mechanism for
coordinating the work of multiple teams reduces overall productivity of each team.

The mechanisms recommended for coordinating teams are:
- A business architecture that is parsed into subsystems with high cohesion and low coupling.
Enough subsystems should be defined to support the number of teams envisioned for the project.
- A systems architecture that will further guide the division of business subsystems.
- A development environment that supports multiple teams that aren’t collocated.

The process for developing and using these multi-team mechanism is:
1. Define Product Backlog indicating that such work has to be done. Make it high priority within the
Product Backlog.
2. Form one development team of people skilled in architecture, design, environments, and working
with teams.
3. This one development team will be the only development team that initially works on the project.
They will Sprint until a solid infrastructure that supports multi-team development is in place. How-
ever, while it is developing such an infrastructure, the team is required to deliver useful, meaningful
business functionality every Sprint. Even though such functionality may be minimal, as described by
the phrase “tracer bullet,”, it is required every Sprint.
4. When the infrastructure is in place, deploy multiple teams. The initial team is used to seed these
teams, continuing to be “pigs,” committed to the develop of user functionality within the teams that
will continue to Sprint.

84

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3B.1 Develop Business Architecture

Product Owner, Team

 The architecture of the system as it will be implemented within the business
operation for the customers and users must be developed in the early Sprints prior to multiple teams
being employed. Only one team should be active when the architecture is designed. . Ensure that this
has been done to a level of detail that supports parsing the functionality among more than one
development team with minimum coupling between teams and the highest degree of cohesion within
the functionality.

 The system will be developed by the teams iteratively, sashimi style, and
they require the ability to parse the business functionality among many teams.

 Any imprecision will lead to conflict and dependencies between development teams
that will require the intervention and attention of the Product Owner and Team to resolve.

 Add to the Product Backlog as a high priority item:
“Detail Business Architecture”, to decompose the model that was built in the Planning phase to an
adequate level of detail for parsing the work amongst teams.

85

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3B.2 Develop Systems Architecture

Product Owner, Team

 The technical architecture within which the business architecture fits and within
which the business functionality will be delivered must be developed in the initial Sprints prior to the
addition of multiple teams. One team should be initially employed to develop such an architecture
until it has enough detail to accurately parse the work.. This architecture spells out all
interdependencies, technology, and technologies for implementing the business system, both at the
quality assurance and implementation details.

 The Development Team fully tests the selected technologies to ensure that
the system can be implemented using them.

 If any of the technologies don’t work as expected and don’t support their part of the
architecture, the Development Team must promptly identify this during the development Sprints and
assist the offshore development teams in a timely resolution.

 Add to the Product Backlog as a high priority item:
“Detail Systems Architecture” to decompose the model that was built in the Planning phase to an
adequate level of detail for parsing the work amongst teams.

86

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3B.3 Define Development Environment

Team, ScrumMaster

 A development environment that will be used by the multiple teams that aren’t
located geographically together and may work in different time zones must be defined and
implemented prior to multiple teams being assigned to the project. Such development should be done
by the initial team during the beginning Sprints of the project. Phase 4 addresses the definition of a
development environment. Such an environment must be defined so that it scales to multi-site, multi-
team, multi-time zone development.

 The project is going to require more difficult to use and more difficult to
learn tools to generate such development coordination. One or more infrastructure people may be
needed to be added to the teams to develop and maintain such an environment.

 Without an adequate multi-team environment, the communications bandwidth
between the various teams may be seriously compromised.

 Add to the Product Backlog as a high priority item:
“Design Multi-team development environment”

87

Path Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C Offshore Software Development

Offshore development benefits from the frequent inspection and adaptation provided by Scrum.
There is an opportunity for this at the end of the Sprint review. There is also an opportunity for this at
each Daily Scrum. However, distances and differences in time zones may make such coordination
difficult. Regardless, it provides the only benefit afforded by Scrum to offshore development, so
every effort should be made to comply.

Offshore development violates almost every other Scrum practices that provides the high productiv-
ity and quality. This isn’t unique to Scrum, but is a problem for any development process. For in-
stance, Scrum utilizes incremental development, with each Sprint developing a complete slice of
product functionality - from requirements through design to coding and testing. Offshore develop-
ment requires the development of requirements and architecture at the customer site, and the detailed
design, testing and coding at the offshore site. Then acceptance testing and the round of bug fixes
and change orders takes place. The customer must fully define all of the requirements upfront,
building an inventory that may go obsolete as business requirements change. While the offshore
developers design and code the application, it the functionality also may go obsolete and be un-
needed.

Another tenet of Scrum that offshore development violates is the ability for the customer to steer the
project Sprint by Sprint, based on inspection of each iterations working functionality. The customer
ensures that the top priority functionality is developed first, and may not even have lower priority
functionality developed. Without this frequent collaboration between development teams and cus-
tomers, much that the customer doesn’t require may be build regardless, and that which is built may
not deliver the top business value.

Still another violation of Scrum productivity practices is that absence of full bandwidth communica-
tion between all team members, ensuring that nuances that are difficult to capture in documentation
are captured. The moment communication occurs through documentation and models, the change for
error occurs. The larger or more complex the project, the greater the chance.

Despite all of this, if offshore development is in the cards, employ the following activities before
entering into Sprints. Then use the Sprint mechanism to monitor and guide the offshore development
teams.

88

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C.1 Develop Requirements

Product Owner, Team

 Based on the vision, develop a full set of requirements, both functional and
nonfunctional for the envisioned system or product. Using modeling techniques, such as UML, fully
describe all of the entities of the system, their methods, their sequences, and their interactions.

 The team has all of the domain knowledge with itself or available to it to
fully model the expected system in every detail. No decision remain unmade or ambiguities exist.

 Any imprecision in the requirements document will result in erroneous functionality
that can only be caught through extensive user acceptance testing, as well as extensive analysis of the
resulting data.

 For every requirement, create an item in the Product Backlog. Add another
column to the product backlog the can be used to point the various documents and models that fully
spell out the definition of the requirements.

89

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C.2 Develop Business Architecture

Product Owner, Team

 Develop the architecture of the system as it will be implemented within the
business operation for the customers and users. Ensure that this has been done to a level of detail that
supports parsing the functionality among more than one development team with minimum coupling
between teams and the highest degree of cohesion within the functionality.

 The system will be developed by the offshore developers iteratively, sashimi
style, and they require the ability to parse the business functionality among many teams.

 Any imprecision will lead to conflict and dependencies between offshore development
teams that will require the intervention and attention of the Product Owner and Team to resolve.

 Fully decompose and detail the model that was built in the Planning phase to
its lowest level of detail. This model will help explain the overview and intricacies of the business
domain to all parties..

90

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C.3 Develop Systems Architecture

Product Owner, Team

 Develop the technical architecture within which the business architecture fits and
within which the business functionality will be delivered. This architecture spells out all
interdependencies, technology, and technologies for implementing the business system, both at the
quality assurance and implementation details.

 The Development Team fully tests the selected technologies to ensure that
the system can be implemented using them.

 If any of the technologies don’t work as expected and don’t support their part of the
architecture, the Development Team must promptly identify this during the development Sprints and
assist the offshore development teams in a timely resolution.

 Fully decompose and detail the model that was built in the Planning phase to
its lowest level of detail. This model will help explain the overview and intricacies of the system’s
architecture to all parties..

91

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C.4 Define Development Environment

Team, ScrumMaster

 Define a development environment that will be used by the multiple teams that
aren’t located geographically together and may work in different time zones. Such a development
environment must support source library sharing across all teams. Phase 4 addresses the definition of
a development environment. Such an environment must be defined so that it scales to multi-site,
multi-team, multi-time zone development.

 The project is going to require more difficult to use and more difficult to
learn tools to generate such development coordination. One or more infrastructure people may be
needed to be added to the teams to develop and maintain such an environment.

 Without an adequate multi-team environment, the communications bandwidth
between the various teams may be seriously compromised.

92

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

3C.5 Develop Acceptance Tests

Product Owner, Team

 Since the teams that developed the requirements are different from the teams
performing the design, coding and unit testing, a way must be present to ensure that the requirements
have been fully complied with through working, solid functionality. Acceptance tests automated into
a testing tool provide such a mechanism.

 If the team has developed Use Cases to describe the user interaction with the
anticipated system, these should be the basis for defined rigorous acceptance tests.

 To the extent that these tests are incomplete, there is no mechanism that ensures the
presence and solidity of the expected functionality.

93

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

4 Development Environment

As a team starts working together, one of the first tasks is to ensure that they have a solid, mutually
shared set of engineering practices, methods, and tools. The first several Sprints may have backlog
embedded into them to progressively build such an environment. The below table identifies
important aspects of the development and the backlog items that should be placed into the product
backlog if such aspects aren’t present.

Experts develop better systems. This seemingly trite expression has been misapplied to agile
processes, where some have alluded that agile only works when done by teams of experts.

Agile processes don’t require experts. Agile teams can be composed of people with any set of
software engineering skills. However, the practice of frequent inspection confronts management with
the consequences much sooner than traditional prescriptive development processes. Every day, the
consequences are seen at the daily Scrum. Team members report that the build didn’t work, that their
code was overwritten, that the components don’t match the methods in the class models. At the
Sprint review, the team presents its increment of working functionality. Except, the functionality is
barely demonstrable because of bugs. Or, the user interface is so poorly constructed that the
customers start objecting. Or, in subsequent iterations the productivity declines because of poor
design and inadequate refactoring. The bad news of inadequate team staffing is apparent
immediately, whereas traditional projects usually hide the bad news until the end of the project, when
the system isn’t ready.

When I first implemented Scrum, the engineering teams and engineering practices were pretty solid
and work progressed smoothly. As agile practices have spread, a wider audience of organizations and
skill sets are attempting to use agile practices. Some of the more dramatic failures have caused the
observation that “experts are needed.” To the contrary, I feel that the problems highlighted by agile
processes are valuable. They indicate to an alert and intelligent management the exact engineering
improvements that are needed. Remediation plans can be drawn up and action taken. The actions,
such as training or bringing in expert consultants as mentors, can be included in the iterations. The
engineering practices and resulting increments of functionality improve, Sprint by Sprint, until a
solid team and product is realized.

94

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

An advantage of Scrum over many processes is it can be implemented in one day. A disadvantage of
Extreme Programming is the time needed to implement its full set of practices. However, when I
implement Scrum and find inadequate engineering practices, I’ve started to implement Extreme
Programming also. As the organization gets the benefits of iterative, incremental development, it’s
engineering practices also incrementally improve.

An increment of potentially shippable product functionality is demonstrated at the end of every
Sprint. I’ve found that specific engineering practices are necessary for this to occur, much less start
to realize the productivity inherent in agile processes.

Source code management
Inadequate source code management is easily detected through overwritten and lost code. Check in/
check out, version control, branching, and release management are all necessary. If the team is not
collocated, or multiple teams are involved, a multi-site source code management system is required.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Investigate and implement source code management”

Test driven development
This ensures that tests fully reflect the functionality and visa versa. This practices causes the devel-
oper to think through the design through thinking through the test, all prior to coding. Use either this
or other unit testing practices to ensure a full suite of unit tests.

If unit testing is not a standard practice employed by the team, insert into the Product Backlog at a
high priority:
“Nonfunctional Requirement - Learn and implement test driven development”

Automated builds
Every time code is checked in, build the software. If the build fails, fix the underlying problem.
Otherwise, the problems just accumulate until nothing can be demonstrated at the end of the Sprint.
Testing suites are aggregations of unit, string, system, and stress tests. These are applied in the small
after every build, on the average at the end of every day, and in total at least weekly. Without this
testing regimen, the quality, internal integrity, external integrity, and viability of the functionality
cannot be known.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Investigate and implement automated build and test capability”

Refactoring
As functionality gets added to code, redundancies, inefficiencies, and awkward structures occur. For
example, the same core functionality may be expressed in multiple instances, each instance contain-
ing small variations from the other. The practice of refactoring means that the engineers ruthlessly
remove these inefficiencies when they are found. Time is allocated for the code to be cleaned up.
Management and the engineers know that short term gains from accepting sloppy code is more than

4 Development Environment

95

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

paid for later in the project.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Investigate, learn and implement refactoring”

Coding Standards

Coding standards ensure that the code is uniform and readable.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Devise and implement coding standards”

User Development of Acceptance Tests
Users understand what the functionality should do. They should develop tests to assure themselves
that the software delivers the functionality as expected. Since Scrum delivers functionality at the end
of every Sprint, customers should be developing acceptance tests throughout the Sprint and include
them as part of the automated build process.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Investigate and implement user development of acceptance
tests”

Frequent Check-in of Code
Code needs to be integrated and built frequently to ensure that it fits together. Frequent, at least daily,
checking in of code is a practice that provides this assurance.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Set standards for checking in code”

Shared Code
Code should not be developed in isolation. Such practices as paired programming and code reviews
help to ensure the quality of the code and also provide an opportunity for learning. The team should
share the entire code library to ensure the consistency, quality, and standardization of code.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Investigate and implement code review and sharing practices”

Working Environment

Communication bandwidth between team members needs to be maximized in Scrum. Maximized
communication in small teams takes the place of extensive documentation. To maximize bandwidth,
the team should be provided with:

- a team work space where they can meet as required to discuss design, issues, and any outstanding
development decisions. This room should be equipped with a speakerphone, flip charts, and more
than one whiteboard. This room may double as the room where the Daily Scrum is conducted.

4 Development Environment

96

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

4 Development Environment

- a working environment where team members can readily see and hear each other. If cubicles are
currently being used, minimize them. Remove walls. Put a shared work space, such as tables, in the
middle of the opened up cubicles.

- More than sufficient servers, networks, workstations and software. If any of these are substandard,
they impede the developers and reduce productivity.

If this capability is not in place, insert into the Product Backlog at a high priority:
“Nonfunctional Requirement - Upgrade working environment and tools for teams”

These and other practices aim toward one thing: the increment of product functionality demonstrated
at the end of each Sprint has to be potentially shippable. If these practices aren’t employed, one just
doesn’t know how complete the functionality is and how much work remains. Some organizations
think that they can get around the need for shippable increments. They organize a separate quality
assurance group that tests the code afterwards. This practice ensures that completeness can’t be
measured every Sprint. To address this problem, integrate the testing engineering with the
development engineering on each team. The teams are intended to be cross functional, able to
address all of the aspects of engineering the demonstrable functionality.

97

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 5 Project Staffing

The business project manager and IT project manager are jointly responsible for staffing the project
with development and business domain knowledge and skills. Each project team is of limited size,
with a maximum of ten to twelve staff members. Teams that are larger than this require a
communications infrastructure that reduces their productivity and hinders their ability to self-
organize. Such teams should be divided to create more than one team.

A Scrum team is cross-functional, with all of the skills within it needed to build an increment of
product functionality. The tasks the team performs includes planning an Sprint, analyzing the
functionality, designing a solution, building the solutions and any documentation, and testing that the
solution works as expected. The skills in the team will vary from Sprint to Sprint, and span business
and technology domain knowledge and skills, analysis skills, design skills, development skills,
documentation skills, and testing skills. Most of the people on the project are full-time, but some
people may be assigned to the project on a part-time basis.

The best people available should be assigned to the team. The team will produce increments of
functionality as best it can; the better the team’s skills, the more functionality it can produce. Scrum
maximizes people’s ability to employ their skills, but is constrained by the skills that are applied. The
business project manager ensures the team has adequate business domain knowledge; this maximizes
the accuracy of the functionality produced and minimizes the time that developers spend waiting for
decisions. The IT project manager ensures that adequate IT skills are available to maximize the utility
of the team members with business knowledge.

Teams self-organize. That is, the team is responsible for collaborating among itself to figure out how
to build an increment of functionality within the Sprint, and to figure out who will do what work.
Some team members are more senior and experienced; they exert more influence and are natural
leaders within the team. However, no one is in charge. Instead, the team members are collectively
responsible for figuring out how they will deliver the business functionality. This may sound like
chaos, but given the pressure of the commitment to create functionality within the Sprint, the team
quickly focuses on the work, arranging itself as best as possible.

The project should be staffed with the best people available, including people with:

- user, customer, or business domain expertise;

- technology domain expertise;

- testing domain expertise;

- documentation domain expertise (if documentation is to be build during the Sprint); and,

- infrastructure, build, and source code management expertise.

Maximum productivity is derived from experts. However, if cross-training or mentoring is desired,
the staff can be mixed between experts and novices. Ensure that the team knows that management
has taken this loss of productivity into account.

If the project will consist of more than one team, only staff one team for the first several
Sprints. After the initial standards, architecture, and facilities are in place, seed additional
teams from this team.

.

98

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 6 Project Initiation

Projects are started with an initiating workshop. If the team has never used Scrum, this workshop
usually lasts three days. During the workshop the principles, practices and flow of a Scrum project
are presented. They are then applied during the workshop to the project. By the end of the workshop,
the project is underway using Scrum. This is possible because Scrum minimizes upfront planning,
instead relying on self-organization of the teams and work, and emergence of the product and
requirements.

The workshop flow is:

1. A trainer presents agile concepts, theory, practices, and an overview of the Scrum and
Extreme Programming process and process flows.

2. The business project manager presents the business domain, the project definition and the
requirements and release plan for the first year. The IT project manager then presents an
overview of the product architecture, target technology, and development technology.

3. The trainer presents Product backlog, Sprint Planning, and Sprints concepts.

4. Team members introduce themselves. Since the team will be self-organizing, it’s important
that they get used to talking in front of each other. It is also important that they know each
other’s backgrounds, strengths, and perceived weaknesses.

5. The business project manager and the team define a product backlog with enough work to
drive the team for several months of Sprints. They discuss the top five to ten requirements
detail. The business project manager explains how they relate to the overall product.

6. The business project manager and the team brainstorm about how much functionality the
team can build in the next Sprint. They scheme, plot, diagram, design and layout what the
team believes it can build in the next thirty day Sprint. The Business Project Manager is there
to validate their work and to answer any questions.

7. The team defines the Sprint backlog for the next Sprint to turn the selected product backlog
into working functionality. The team self-organizes, defining what work it believes it will
have to do to build the functionality and collectively deciding who will do what work. If a
PERT chart is used to figure this work out, it is discarded immediately afterward.

8. The trainer presents the daily Scrum, end of Sprint, Sprint signature, and management topics.
The team becomes aware of the daily status meetings. It finds out that management will
attend daily to answer questions, make decisions, and remove anything slowing it down that
is within management’s power to remove.

9. The trainer presents engineering practices that will be followed during the project. The team
becomes aware of continuous builds, test before coding, collective code ownership, paired
programming, and other engineering practices it will use.

The project team starts the first Sprint. The team leaves the workshop and begins the actual work to
turn the selected requirements into working functionality. If the team and organization already know
Scrum, allocate one to two days and remove items 1, 3, 4, 8, and 9.

99

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 7 Sprint Planning Meeting

The purpose of the Sprint is to turn a set of the product backlog into an increment of potentially
shippable product functionality. The product owner, ScrumMaster, and development team meet prior
to every Sprint to determine what product functionality the team will work on. The product owner
presents the product backlog and the team selects what it believes it can build during the Sprint.

Customers, management, users and other interested parties, also known as “stakeholders,” are also
welcome to this presentation. Regardless, the prioritization of the product backlog remains the
exclusive responsibility of the product owner.

The Sprint planning meeting actually consists of two meetings. During the first meeting, the product
backlog for the next Sprint is selected by the team. During the second meeting, the team identifies
the Sprint backlog necessary to turn the product backlog into the increment of product functionality.

The first meeting lasts anywhere from 1 to 4 hours, depending upon how obvious the next set of
work is.

The three inputs to this
meeting are:

1. The previous product
increment (unless this is
the initial Sprint of the
project);

2. The prioritized product
backlog; and,

3. The current state of
business conditions and
technology.

The meeting starts by the
product owner presenting
the product backlog. If the
product backlog has
changed significantly
since the last Sprint
planning meeting, the
product owner should discuss what caused the changes and their impact on the project. In presenting
the product backlog, the product owner should focus on the top priority items, particularly that set of
items which represents an estimated amount of work equivalent to what a team could maximally
select to develop in one Sprint.

100

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7 Sprint Planning Meeting
The product owner and team collaborate about the meaning and details of these backlog items until
the team has enough grasp of the intentions and details to arrive at their own estimate of how long it
will take to turn the item into product functionality. This estimate supersedes the previous estimate
for each item. The reason for this is that the team now has a better grasp of the technology and
business domain than it did at the start of the last Sprint. To the extent that the product owner has
been working with the team, frequently refining the estimates, this variation is minimal. Otherwise
these variations may be a surprise.

The collaboration between team and product owner includes any input that any other participant in
the Sprint planning meeting provides. The Sprint planning meeting is the one completely open
meeting in Scrum, where everyone has a say. To the extent that the product owner has worked with
everyone who has a stake in the product or system prior to the meeting, this input has already been
gathered. To the extent that the organization is at odds about what should be done next, the Sprint
planning meeting may have difficulty concluding. This is appropriate, ensuring that development is
not initiated until organizational agreement is reached on funding the next Sprint. Since this
agreement is required to start a Sprint, Scrum provides a thirty day checkpoint for how to best spend
an organization’s money.

Having selected the Product Backlog, a Sprint Goal is crafted. The Sprint Goal is the purpose of the
selected functionality; that is, what should the selected backlog be able to demonstrate once it is
built? The Sprint Goal is an objective that will be met through the implementation of the Product
Backlog. For instance, this Sprint Goal could be:

Sprint Goal: to provide a standardized middleware mechanism for the identified customer
service transactions to access backend databases.

The Sprint Goal gives the team some wiggle room regarding the functionality. For example, the goal
for the above Sprint could also be: “Automate the client account modification functionality through a
secure, recoverable transaction middleware capability.” As the team works, it keeps this goal in
mind. In order to satisfy the goal, it implements the functionality and technology.

 If the work turns out to be harder than the team had expected, then the team might only partially
implement the functionality. At the Sprint Review meeting, management, customers, and the Product
Owner review how and to what degree the functionality has been implemented. They review how the
Sprint Goal has been met. If they are dissatisfied, they can then make decisions about requirements,
technology or team composition. During the Sprint, though, the team alone determines how to meet
the Sprint Goal. At the end of the Sprint, any incomplete work returns to the Product Backlog.

The team then devises the individual tasks that must be performed to build the product increment.

101

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7.1 Facilitate Sprint Planning Meeting

ScrumMaster

 A Sprint planning meeting initiates every Sprint. The ScrumMaster is responsible for
setting up this meeting, ensuring its successful operation, and concluding the meeting with the
Scrum team underway on an agreed to next Sprint. The ScrumMaster ensures that all rules are
adhered to and the correct artifacts are created.

 The ScrumMaster is familiar with the rules, practices, and process of Scrum.

 The Product Owner may be unavailable for the meeting. Do not conduct the meeting
without the Product Owner or an effective delagee of the Product Owner who has full authority to act
in their absence. It is better to let the team languish after the end of the Sprint rather than start them
on some work that is not important enough for the business to prioritize and describe.

 The Sprint planning meeting is crisp and brief, composed of two equal parts,
and not lasting more than one day. The Product Owner (or responsible delegate), ScrumMaster, and
development team must attend. Others can attend and participate, but their attendance is not
required. The meeting has the following parts and components:

1. Define next Sprint - first part of meeting, usually lasting 2-4 hours.

- The Product Owner presents the highest priority backlog

- The team asks questions until they understand what was presented in enough detail to
understand how to build it

- The team suggests alternate backlog that may better fit into the Sprint. Such as, “if we do
this also, it will be almost free since we will have that code open anyway.”

- The team and Product owner define an objective for the Sprint, called a Sprint Goal, that is
to be met when the functionality is built. The Sprint Goal provides wiggle room for the team
to remove or add functionality as time permits

- The team and Product Owner finalize what product backlog is included within the Sprint
and falls within the Sprint Goal.

2. Define the work necessary to turn the product backlog into an increment of potentially shippable
product functionality.

- The team defines what work has to be completed to meet the Sprint Goal. The work consists
of tasks, each task requiring one to sixteen hours to complete. If a task takes more than
sixteen hours, break it down into multiple tasks or wait until the details are better known so
that it can be subdivided at that time.

102

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 7.1 Facilitate Sprint Planning Meeting

- define architectures and designs to bond the work together or to further understand the
detailed work that must be completed to deliver the functionality

- team members sign up for tasks based on their interests, skills, and input needed to
accomplish the Sprint Goal

- the team members estimate the work for all of the tasks and ensure that all dependencies
have been thought through; that is, if something has to happen for a task to start, that there is
a task for that work.

- the team asks the Product Owner for clarification, as needed, and collaborates with the
Product Owner to determine that the work seems right for the goal.

- the team enters the work as Sprint Backlog into a Sprint Backlog spreadsheet that will be
used to track work burndown during the Sprint.

3. Once all of this has been accomplished, the Sprint is declared to be started. Before everyone
disperses, you establish and publish a date for the Sprint Review meeting and the next Sprint
Planning meeting.

As ScrumMaster, your job is to ensure that a meeting that follows this agenda is held to start every
Sprint. Guidelines you should enforce are:

1. The primary dialog is between the Product Owner and team. Others may participate and elucidate,
but their participation should not diminish the dialog and collaboration between the Product Owner
and team. If necessary, limit their involvement by classifying them as “chickens.”

2. Prior to the meeting you should meet with the Product Owner and ensure that the Product Backlog
is up to date and ready to present to the team.

3. Ensure that the three artifacts of selected Product Backlog, Sprint Goal, and Sprint Backlog are
completely in place prior to ending the meeting.

4. Ensure that the teams has thought through all aspects of turning the selected Product Backlog into
potentially shippable product functionality and assigned tasks to them. Include environmental and
engineering practice development tasks as well as any training that is needed.

5. Ensure that this is an active collaboration between two partners. The conclusion is an agreement
documented in the artifacts.

6. Move the meeting along so that it concludes in less than one day. Don’t let the meeting get bogged
down by analysis and design work that will occur within the Sprint.

7. Remember that the team will do its best to meet the Sprint Goal, but it is the team working to
make their commitment. If the team can’t make the commitment by the end of the Sprint, this is a
learning experience that will help the next Sprint be planned better. It is not a failure or something to
be punished.

103

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7.2 Present Product Backlog

Product Owner

 To start the meeting, the Product Owner presents the top priority Product
Backlog. The amount of Product Backlog presented is approximately equal to the sum of estimates
for those backlog items compared to the number of working days multiplied by the size of the team.
The latter value is a crude estimate that presents a starting point for collaboration.

The Product Owner leads a discussion about what changes to the backlog are appropriate, given
what was demonstrated at the end of the previous Sprint (see Sprint Review). What does everyone
want the team to work on next? What opportunities does the previously completely Sprint offer to
the Backlog. The Product Owner works with the team to identify and explain backlog that the team
believes it can develop during the next Sprint (30 calendar days).

The Product Backlog is a list of requirements that includes functional and nonfunctional items.
Ensure that the nonfunctional items that will scope and bound the functionality are prioritized as
high as the functionality that they will support. For instance, if sub-second response time for a large
user base is required for a function, these both are the same priority.

 The Product Owner communicates to the team what requirements are desired in the
next product increment delivered at the end of the upcoming Sprint. These requirements are listed in
the Product Backlog. The Product Owner presents these items and describes them in enough detail
for the team to understand what is desired and to begin work.

 The Product Owner has the authority to communicate top priority product
backlog and initiate the Sprint with it. The Product Owner has worked with the team to construct
reasonable estimates for the top priority product backlog prior to the meeting.

 The team lacks adequate business domain knowledge to collaborate in any meaningful
way with the product owner. If this is the case, the team must be reconstituted or augmented to include
members with such domain knowledge. Another risk is that the Product Owner has not worked with the
team to develop meaningful estimates for the Product Backlog. In this case, the amount of backlog that
the team selects may vary significantly from the expectations of the Product Owner.

104

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7.3 Select Product Backlog for Sprint

Team

 The team is responsible for selecting as much Product Backlog as it believes and
estimates it can turn into an increment of potentially shippable product code during a thirty day
Sprint. The Product Owner has presented the top priority product backlog. The team questions the
Product Owner to ensure it adequately understands the backlog so that it can make a reasonable
commitment. Then the team selects those Product Backlog items.

 The team has the business and technical domain knowledge to make
estimates for building the various product backlog items presented. If the team does not have such
domain knowledge, then additional nonfunctional product backlog items should be established as top
priority that address this shortcoming - through training, working sessions, additional analysis, or
whatever techniques are deemed appropriate by the team.

 The team feels compelled to accept the estimates on the Product Backlog as is,
especially if they helped develop them previously with the Product Owner. Nothing focuses attention
like a noose, and making a commitment will cause the team to inspect its previous estimates with
renewed vigor and accuracy. The team must never commit unless it feels it has a reasonable chance,
as a team, to build the functionality during the upcoming Sprint.

 The team listens as the Product Owner presents what he or she believes the
team can develop in the next Sprint. Ask questions and clarify what is being presented until you have
a sense of how to convert these requirements into working functionality. Document these further
details for your use during the Sprint.

As the Product Backlog is presented, you may see opportunities to add lower priority product
backlog to the Sprint at a relatively modest cost, since you will be working in that area of the system
and code anyway. Suggest this to the Product Owner.

As you question the Product Owner regarding the Product Backlog, revise the estimates if necessary.
You have just completed a Sprint and may have more insight into the details behind the estimates.

When you estimate how much Product Backlog you should commit to for the Sprint, take into
account all of the following:

1. Any vacation, training, corporate meetings, or other down time to which you have already
committed during the Sprint;

2. The skills and competence of the various team members;

3. The amount of teamwork that has occurred in the past;

4. The degree to which every and all of the team members can commit themselves to the work. For
instance, if a team member has a very sick relative, they will be naturally distracted during the
upcoming Sprint.

Based on all of these factors, assess your capacity for work during the Sprint and take that into
account when evaluating the estimated work to which you are committing yourself.

105

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7.4 Define the Sprint Goal

Product Owner

 Having selected the Product Backlog, a Sprint Goal is crafted. The Sprint Goal
is an objective that will be met through the implementation of the Product Backlog. For example, if
the selected Product Backlog is:

To meet the above Sprint Goal, some of the Sprint Backlog that the team might devise is:

• Map the transaction elements to backend database tables;

• Write a business object in C++ to handle transactions via defined methods and interfaces.

• Wrap the C++ in a CORBA wrapper;

• Use Tuxedo for all queueing, messaging, and transaction management; and,

• Measure the transaction performance to determine whether scalability requirements could
be met.

Then, an appropriate Sprint Goal could be:

Sprint Goal: to provide a standardized middleware mechanism for the identified customer
service transactions to access backend databases.

The reason for having a Sprint Goal is to give the team some wiggle room regarding the functional-
ity. For example, the goal for the above Sprint could also be: “Automate the client account modifica-
tion functionality through a secure, recoverable transaction middleware capability.” As the team
works, it keeps this goal in mind. In order to satisfy the goal, it implements the functionality and
technology. If the work turns out to be harder than the team had expected, then the team might only
partially implement the functionality. At the Sprint Review meeting, management, customers, and

 The Sprint Goal describes the umbrella objective of the Sprint. The Product Owner
has proposed Product Backlog and through collaboration with the team has agreed on what will be
built during the upcoming Sprint. Why is this backlog being automated, though. What objective will
it accomplish, what purpose will be achieved. This is the Sprint Goal, a simple sentence or phrase
that describes the purpose of the Sprint. Within this goal, the team will implement more or less of the
selected functionality to achieve the goal.
 The selected Product Backlog is cohesive and its development will
accomplish a goal. If this Product Backlog isn’t cohesive, the Sprint Goal may have to be stated in
very generalized terms, such as “Implement various functionality that will improve the ease of use of
the system.”

106

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

the Product Owner review how and to what degree the functionality has been implemented. They
review how the Sprint Goal has been met. If they are dissatisfied, they can then make decisions about
requirements, technology or team composition. During the Sprint, though, the team alone determines
how to meet the Sprint Goal. At the end of the Sprint, any incomplete work returns to the Product
Backlog.

 7.4 Define the Sprint Goal

107

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

7.5 Construct Sprint Backlog
Team

 After establishing the Sprint goal, the team determines what work will have to
be performed in order to reach the goal. All team members are required to be present when this is
determined. The team may also invite other people to attend in order to provide technical or domain
advice. The Product Owner often attends, too, but this is the team’s meeting. It is often in this meet-
ing that a team realizes that it will either sink or swim as a team, not individually. The team realizes
that it must rely on its own ingenuity, creativity, cooperation, collaboration, and effort. As it realizes
this, it starts to take on the characteristics and behavior of a real team. During this meeting, manage-
ment and the user should not do or say anything that takes the team off the hook.

The team compiles a list of tasks it has to complete to meet the Sprint goal. These tasks are the
detailed pieces of work needed to convert the Product Backlog into working software. Tasks should
have enough detail so that each task takes roughly four to sixteen hours to finish. This task list is
called the Sprint Backlog. The team self-organizes to assign and undertake the work in the Sprint
Backlog. Sometimes only a partial Sprint Backlog can be created. The team may have to define an
initial architecture or create designs before can fully delineate the rest of the tasks. In such a case, the
team should define the initial investigation, design, and architecture work in as much detail as
possible, and leave reminders for work that will probably have to be done once the investigation or
design has been completed. At that time, the work will be more fully understood and can be listed in
more detail.

The team modifies its Sprint Backlog throughout the Sprint. As it gets into individual tasks, it may
find out that more or fewer tasks are needed, or that a given task will take more or less time than had

 The team and the Product Owner have agreed on what will be developed during the
upcoming Sprint. The team now figures out how it will build this functionality, what specific tasks
and units of work must be completed for the functionality to live.

 The team may discover that the aggregate of tasks it defines represents more work than
available time in the Sprint. If this is the case, the team should review its work breakdown with the
ScrumMaster and Product Owner to validate their understandings and assumptions. If there is still
too much work, the team and Product Owner should collaborate to reduce the work to an acceptable
size for that Sprint. If there isn’t enough work, the team should collaborate to increase the backlog.

 The team has the skills and expertise necessary to figure out the work. If not,
reformulate the team to include such skills.

108

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

been expected. As new work becomes required, the team adds it. As tasks are worked on or com-
pleted, the hours of estimated remaining work for each task are updated. When tasks are deemed
unnecessary, they are removed. Only the team can change its Sprint Backlog during a Sprint. Only
the team can change the contents or the estimates. The Sprint Backlog is a highly visible, real time
picture of the work that the team plans to accomplish during the Sprint.

Sometimes the Scrum Team discovers that it has selected too much Product Backlog to complete in a
single Sprint. If this happens, the ScrumMaster immediately meets with the Product Owner. They
jointly identify Product Backlog that can be removed while still meeting the Sprint Goal.

Teams become better at Sprint planning after the third or fourth Sprint. At first, a team tends to be
nervous about taking on responsibility and it under-commits. As it becomes more familiar with
Scrum processes, as it start to understand the functionality and technology, and as it gel into a team,
it commits to more work.

 7.5 Construct Sprint Backlog

109

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 8 Product Backlog Development

The project starts with a vision of how the product or system will benefit the organization. The best
way to realize this vision changes as the project progresses. The business climate may change.
Government regulations may introduce new requirements. New technology may change the manner
in which the functionality will be developed or operated. As the project progresses, Sprint by Sprint,
these changes are reflected in the contents and prioritization of the Product Backlog.

The Product Backlog lists the product requirements. These requirements, or backlog items, are
prioritized. The higher priority items will provide more value to the business when implemented, or
are necessary prerequisites for this highest value functionality.

The Product Owner is responsible for the Product Backlog. He or she may choose to be the only
person who can enter backlog items, or can make the Product Backlog open so that everyone can
enter items. Regardless, the prioritization of the Product Backlog is the sole responsibility of the
Product Owner.

110

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

8.1 Manage Product Backlog

Product Owner

 The requirements that define the most valuable functionality of the system or
product change as the environment within which the project occurs changes. The Product Owner
assesses these conditions throughout the project, modifies the contents of the Product Backlog
accordingly, and prioritizes the Product Backlog to optimize the sequence in which the functionality
is constructed and implemented. The following activities are performed by the Product Owner to do
so:

Assess Business Conditions -

When the project was conceived and funded, the return on investment of the functionality was
measured within the context of known and estimated business conditions. As these conditions
change, the value of the functionality that can be developed by teams during upcoming Sprints
changes. Several examples are:

- If a competitor releases new functionality that appeals to your organization’s customers, the
Product Backlog may need to be adjusted to develop and release similar or better
functionality sooner than planned, or at all if the functionality hadn’t been planned;

- If interest rates soar, the cost of funds may exceed the value of the functionality to be
implemented and only some of the functionality may be worth developing;

- If your organization is acquired by another organization, the whole project may be in
question and the Product Backlog may need to be frozen; and,

- When the customers and users see the actual functionality at a Sprint review meeting, they
may reassess the value of the functionality in their operations. The Product Backlog may need
to be adjusted to take these new understandings into account.

 Manage the contents and priority of the product backlog to drive each Sprint to deliver
the highest priority and most valuable product or system functionality.

 The Product Backlog is the only source of work for the development teams.
The Product Backlog is stored openly so that its contents are continuously available to anyone
interested in the project. Anyone can request that requirements that they have conceived be placed on
the Product Backlog.

 If the Product Backlog is not managed, the functionality developed by the teams may not
be of the greatest value to the organization.

111

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Assess Technology -

The value of some functionality is derived from the technology on which it is implemented. For
instance, the primary benefit of defense, avionics, and telephone functionality may be that it is
delivered using wireless GPS technology. However, the standards under which this functionality and
technology will be used may change as the project progresses, requiring the technology to be
reimplemented or adjusted.

If the value of the project diminishes unless the technology is changed, or if using newer technology
may provide a greater value than the initially utilized technology, the Product Owner may need to
revisit the Product Backlog. Additional Product Backlog that consists of nonfunctional requirements
to utilize the new technology may need to be inserted and prioritized.

Assess Additional Requirements Requests -

As the project progresses and becomes increasingly visible through Sprint Reviews and early
implementations, many people with interests in the project will think of new requirements for the
system or product. Some of these may be minor, such as changing the layout of a user interface.
Others may be major, such as the redesign of credit checking. Regardless, all of these requirements
need to be captured and entered onto the Product Backlog. This ensures that the Product Backlog
represents the needs and thinking of all involved and interested parties, and removes the Product
Owner from having to decide which requirements to include and which to exclude. All requirements
are valuable, just some more valuable at that time than others.

Maximize Return on Investment through Prioritization -

8.1 Manage Product Backlog

The Product Owner maximizes the value of the work done by the development teams by ensuring
that the Product Backlog that they select during the Sprint Planning meeting is of the highest priority
and greatest value to the organization at that moment. At the start of every Sprint Planning meeting,
the Product Owner is responsible for presenting this highest value Product Backlog first.

The Product Owner should keep Product Backlog priorities up-to-date. The Product Backlog is kept
visible to everyone and anyone throughout the project. Up-to-date prioritization keeps everyone
aware of the value decisions made by the Product Owner and also keeps them aware of the assessed
value and timetable for functionality in which they are particularly interested.

112

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 9 Sprinting to Develop Product Functionality

The team works for a fixed period of time. The team has to determine
how to achieve its goals and bears full responsibility for making sure that
its goals are achieved.

The Scrum Team has decided what it will accomplish during the upcoming Sprint. It now Sprints to
accomplish the Sprint Goal. The team is free to accomplish this goal as it sees fit, adapting to the
circumstances, technology, and organizational terrain as best it can.

During conflicts, the military will put teams of soldiers into insertion points in areas of operations.
Each team is assigned a mission to accomplish and self-organizes to accomplish it. The team has all
the supplies and training that it is expected to need. Since the insertion point is usually in the middle
of a complex, even chaotic, situation, the team’s knowledge of the situation or what to do to reach
the goal is limited to a game plan. The team is intended to improvise in order to accomplish its
mission. At some predetermined time, the mission ends and the team is picked up.

Scrum was first described in similar terms: “Typically, the process starts with management giving
the project team a broad goal. Rarely do they hand out a clear-cut new product concept or a specific
work plan. Thus, while the project team has extreme freedom, it is also faced with extreme chal-
lenges embodied within the goal. The project team is typically driven to a state of ‘zero information’
as the extent of the challenge essentially makes prior knowledge inapplicable. Thus the team must
fend for itself and find a way to coalesce into a dynamic group.”

“According to several of the companies surveyed, the process tends to produce significant
quantities of mistakes. However, these are viewed invariably from the plus side as being valuable
learning experiences. In the end, the bottom line is that the chaotic process tends to produce more
revolutionary products faster than the old sequential development process. It also tends to develop
the project team members into ‘triple threat’ players as each person’s knowledge base is broadly
expanded through their interaction. At the same time this heightened knowledge filters into the entire
organization. (The New New Product Development Game, Hirotaka Takeuchi and Ikujiro Nonaka,
Harvard Business Review (January 1986), pp. 137-146. (WJA)).

113

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Sprint Mechanics
Sprints last for thirty calendar days. A team takes this long to get its arms around a problem and to
produce a product increment. Management usually can’t refrain from interfering if more than thirty
days goes by, so the Sprint is limited to thirty days. First-time Scrum users usually want to change
the length of the Sprint to, say, sixty days, two weeks, or one week. It is worth resisting this tempta-
tion. Thirty days is an excellent compromise between many competing pressures. Adjustments can
be made to the duration after everyone has more experience with Scrum.

Every product development project is constrained by four variables, (1) time available, (2) cost, in
people and resources, (3) delivered quality, and (4) delivered functionality. A Sprint greatly restricts
the first three variables. The Sprint will always be thirty days long. The cost is pretty well fixed to
the salaries of the team members and the development environment. This is usually in place before a
Sprint starts. However, teams can add the cost of consultants or tools during Sprints to remove
impediments. Quality is usually an organizational standard. If it isn’t, the team needs to devise
quality targets prior to Sprinting.

The team has the authority to change the functionality of the Sprint so long as it meets its Sprint
Goal. The team does this is by decreasing or increasing the depth of the functionality delivered. For
example, the team can change the depth of functionality to “check account balance.” The team can
implement this functionality by checking all possible accounts, or only one account. The design and
code to perform each implementation is significantly different. At the Sprint Review meeting, the
depth to which the functionality is implemented is demonstrated and discussed. Any remaining,
unimplemented functionality is reentered onto the Product Backlog and reprioritized.

During the Sprint, all work that is performed is measured and empirically controlled. More or less
work may end up being accomplished depending on how things proceed. Factors influencing the
amount of work accomplished include the team’s ability to work together, the skills of team mem-
bers, the details of the work to be performed, and the capability of the tools and standards with which
the team has been provided. Because Scrum allows the team to change the amount of work it per-
forms during the Sprint, the team has some flexibility, and is able to do more or less so long as it
meets its Sprint Goals.

The team is required to deliver a product increment at the end of the Sprint. Daily product builds are
an excellent way for the team to measure its progress. Prior to the build, the team should update the
test suite and follow each product build with a smoke, or regression, test. Performing code check-ins
for the builds is also a good idea, as it improves team communication and coordination.

9 Sprinting to Develop Product Functionality

114

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.1 Develop Increment of Functionality

Team

 After the overall goals and objectives are established at the Sprint planning
meeting, the team is dropped into the Sprint. The team is asked to do its best to turn the complex
requirements and unpredictable technology into a product increment. It is asked to tame chaos, to
turn complexity into predictable product.

Scrum asks people to try to wrest a predictable product from unpredictable complexity. Some people
can’t handle this type of assignment. During the Sprint, they may decide that they want out. Other
people relish the chance to build something that requires their best effort. Those who succeed at
Scrum are the individuals that will form the core of an organization. Scrum helps identify these
people.

The team has complete authority during the Sprint. It can work as many hours or as few hours as it
wants. It can hold meetings whenever it wants. It can hold design sessions from 6am to 10pm. It can
spend days interviewing vendors and consultants, or surfing the web for information. The team has
absolute authority, because management has given the team free reign for thirty days.

The team has the authority to change the functionality of the Sprint so long as it meets its Sprint
Goal. The team does this is by decreasing or increasing the depth of the functionality delivered. For
example, the team can change the depth of functionality to “check account balance.” The team can
implement this functionality by checking all possible accounts, or only one account. The design and
code to perform each implementation is significantly different. At the Sprint Review meeting, the
depth to which the functionality is implemented is demonstrated and discussed. Any remaining,
unimplemented functionality is reentered onto the Product Backlog and reprioritized.

 The team has a list of functionality that it committed to develop into functionality
during the thirty day Sprint. The thirty days has started, the clock is ticking. No one is going to tell
the team how to develop and test the functionality. For better or worse, it’s up to the team to figure
out how. The team constructs a list of tasks that, if completed, will result in the functionality. Now
the team works together to make this happen.

 The team has the collective competence and intelligence to fulfill its
commitment to use the technology to build the functionality. Also, the Product Owner, customers,
and others with product and business domain expertise are available to answer questions and make
decisions.

 If the team doesn’t have access to domain expertise, the team is authorized to make the
best decision possible based on its understanding of the domain. Although this may result in
improper or less than optimal decisions, Scrum’s proclivity for action calls for the team to move
forward. Once the Sprint has been planned and authorized by the Product Owner, the ball is in the
team’s court and they are compelled to act and proceed.

115

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 The team has two mandatory accountabilities during the Sprint: (1) Daily Scrum meetings and (2)
the Sprint Backlog. These are working tools for the team. Daily Scrum meetings must be promptly
attended by all team members, whether in person or via telephone. Team members cannot just send
in a passive status report, such as by email or fax. The Sprint Backlog must be kept up-to-date and as
accurate as the team’s activities, so that it constitutes an accurate and evolving picture of the team
and the work that it is doing.

Management has invested thirty days of a team in the Sprint. Regardless of what the team accom-
plishes, it has acquired valuable working knowledge of the requirements and technology. Even when
the team produces nothing tangible, it has nonetheless gone through a very useful learning process.
The team has trained itself to take another crack at a reconstituted Sprint goal. It has a deeper under-
standing of the terrain and the complexity and is better equipped for future Sprints.

9.1 Develop Increment of Functionality

116

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.2 Maintain the Sprint Backlog

Team

 The team modifies its Sprint Backlog throughout the Sprint. As it gets into
individual tasks, it may find out that more or fewer tasks are needed, or that a given task will take
more or less time than had been expected. As new work becomes required, the team adds it. As tasks
are worked on or completed, the hours of estimated remaining work for each task are updated. When
tasks are deemed unnecessary, they are removed. Only the team can change its Sprint Backlog during
a Sprint. Only the team can change the contents or the estimates.

 As the team proceeds, it may discover that it has far more work on its hands than time
remaining in the Sprint.

 The team has an easily available, easy-to-use tool on which to maintain the
Sprint backlog. Excel spreadsheets or index cards often fit the need.

 The Sprint backlog is a list of work, or tasks, that the team has defined as
necessary to turn the selected product backlog into operational functionality. This list includes all of
the analysis, design, testing, coding and documentation necessary to build a potentially shippable
increment of product functionality. This means that the tasks must include all work to produce high
quality software. Refactoring and testing are an integral part of design and coding, not an add-in that
can be dropped under time pressure. If time pressure does occur, and the team has more work than it
can accomplish, functionality is dropped or made less deep or wide. The anticipated quality is not
compromised.

As a team member works on a task, the team member may realize that other tasks are required. In
such cases, these tasks are immediately entered onto the Sprint backlog and estimated. At the end of
each day, the team member updates the tasks that he or she has worked on. The hours of work
remaining is updated to reflect the team member’s new estimate of how much work remains left to
complete the task. This may be more than the initial amount of work estimated, even after the day’s
work. That’s fine ... hours remaining is a workload estimate, not a time reporting tool.

The Sprint backlog has the tasks listed on the vertical axis and the days of the Sprint listed on the
horizontal axis (see example). All of the tasks derived during the Sprint planning meeting are
initially listed with their estimates entered in the first day column. When they are worked on, the
estimated work remaining is updated daily. When new tasks are defined, they are also entered on the
Sprint backlog. Their estimated work is placed in the day of the Sprint when they were initially
defined, and updated thereafter as they are worked on.

117

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.2 Maintain the Sprint Backlog

118

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.3 Assess Sprint Burndown

ScrumMaster, Team, Product Owner

 The team has an easily available, easy-to-use tool on which to maintain the
Sprint backlog. Excel spreadsheets are best for an easy to use tool from which trend lines can be
created, predicting the future based on past work burndown within the Sprint.

 Once the Sprint backlog is constructed during the Sprint planning meeting, the hours
for all tasks can be summed. This is the initial estimated work remaining for the Sprint. This
workload should be zero by the end of the Sprint, indicating that all work is completed. By assessing
the reduction, or burndown, of work daily, the team can assess whether it is likely to be complete by
the end of the Sprint. This “burndown” chart is a graphic representation of what every team member
intuits from doing the work.

 The work reduction, or burndown, is only effective if each team member updates the
hours of work remaining estimate daily as they work on a task. Without daily updating, the
burndown is misleading, usually reflecting less progress than actual and leading to managerial
distress.

 The worksheet below shows a Sprint backlog items. The first column is the
Sprint Backlog item. From left to right, the remaining columns are used to contain the amount of
work remaining during the Sprint, from day one to day 30. Some of them are being worked on and
the number of hours estimated to remain is changing. Others haven’t started yet. The total hours
estimated as remaining is summed in the bottom row:

119

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.3 Assess Sprint Burndown

For the Sprint in the previous figure, the burndown graph created by mapping days remaining with
estimated work remaining resulting in the following burndown graph:

120

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.3 Assess Sprint Burndown

In some cases, the burndown graph isn’t so favorable, indicating that enough progress isn’t being
made in completing the estimated work, and that at the end of the Sprint all work, and probably all
functionality, won’t be completed. The following example show such a burndown graph. By the
fourteenth day, it is obvious that the team has more work than it will be able to complete (or the team
isn’t updating the estimated hours remaining faithfully):

.

121

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 9.4 Readjust Commitments

Product Owner, Team

 In the below example, the team, ScrumMaster and the Product Owner got
together and assessed the situation. The team had committed to automating three transactions on
complex, new technology. The team didn’t have the domain expertise in the data and found it to be
far more complex than anticipated. However, the Sprint Goal was to demonstrate the technology
operational for transactions, so the Product Owner was able to reduce the scope of transactions that
the team was trying to analyze and automate. Day 16 reflects that the work to automate these

transaction was eliminated.

 The team has been updating the Sprint backlog estimates faithfully and
regularly and the estimated work remaining is accurately portrayed.

 The team has bitten off more than it can chew and turn into product functionality in
one Sprint. The team isn’t allowed to reduce quality, to increase time or cost, so the only thing left
is functionality. The team is required to meet with the Product Owner and assess if work required
to implement some or all functionality can be reduced or limited while still meeting the Sprint
Goal.

 Not enough wiggle room was left in the Sprint Goal for adjusting functionality and still
meeting the goal. In this case, the ScrumMaster may choose to abnormally terminate the Sprint, call
another Sprint planning meeting, and reformulate the Sprint.

122

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

In the next example below, the team overestimated the amount of work to build the product
functionality. All work will be completed prior to the end of the Sprint. Although the Sprint could be
terminated early, that would break the heartbeat regularity of deliverables. The team, ScrumMaster
and the Product Owner got together and assessed the situation. The Product Owner was able to
identify additional Product Backlog that the team committed to automating that was within the
“wiggle room” of the Sprint Goal. The Sprint backlog had tasks added to it to address this additional
product backlog on the thirteenth day, as reflected in the burndown graph.

 9.4 Readjust Commitments

123

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

ScrumMaster

Sprints can be cancelled before the allotted thirty days are over. Under what kind of circumstances
might a Sprint need to be cancelled? Management may need to cancel a Sprint if the Sprint Goal
becomes obsolete. A company as a whole may change direction. Market conditions or technological
requirements might change. Management can simply change its mind. In general, a Sprint should be
cancelled if it no longer makes sense given the circumstances. However, because of the short dura-
tion of Sprints, it rarely makes sense for management to cancel a Sprint.

Sometimes the team itself may decide that a Sprint should be cancelled. A team comes to better
understand its abilities and the project’s requirements during a Sprint. The team may realize midway
through the Sprint that it cannot achieve its Sprint Goal. Even if the team’s knowledge of its work
has not changed, the Sprint could still need to be cancelled. For example, the team might run into a
major roadblock. Sometimes, the team feels that it has met its Sprint goal, and decides to cancel the
Sprint because it wants more direction from management before proceeding to implement more
functionality.

That the team has the power to ask the ScrumMaster to cancel a Sprint is very important. The team is
able to stay focused because it can terminate the Sprint if someone tries to change the nature or scope
of its work. Everyone knows this, and is consequently reluctant to make any such changes. Sprint
terminations consume resources, since everyone has to regroup in another Sprint planning meeting to
start another Sprint. The first question that is asked when a Sprint is terminated is usually “Who is
responsible for this meeting occurring early?” Because people don’t want to be named as the answer
to this question, very few Sprints end up being terminated.

 Sometimes it is impossible or impractical for the team to achieve the Sprint goal. One
reason is that the team cannot build the functionality because of technology instability, inadequate
team composition, or complexity of requirements. Another reason is change in business conditions
that invalidate the purpose of the Sprint goal. Abnormal termination ends such a Sprint.

 Proceeding with the Sprint is of less value than ending, reformulating, and
restarting another Sprint. The abnormal termination mechanism is used to prevent undue intervention
during a Sprint by outside parties adding additional backlog to the team, or preventing the team from
floundering and being unproductive.

 Abnormal termination is the responsibility of the ScrumMaster. This is a gutsy call
indicating that something has gone awry and needs to be fixed. In most organizations, halting the
production line is not an honored tradition, but the ScrumMaster’s job is to ensure the process works
and produces valuable functionality.

9.5 Abnormal Sprint Termination

124

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.6 Stop External Interference

ScrumMaster

A team is let loose for the thirty day Sprint. The team has committed to the goal and accepted the
responsibility of building a product increment. It has the authority to act as it sees fit. No person
outside the team can change the scope or nature of the work the team is doing. No one is allowed to
add more functionality or technology to the Sprint. No one can tell the team how to proceed in its
work.

Many organizations are initially uncomfortable with the idea of letting a team loose for a Sprint. It
just doesn’t feel right. It feels too risky. Is it really so strange for management to trust a team of its
own employees to figure out the best and most appropriate things to do? How much of a risk is this
really? Management has assigned the best people available to the team. What the team will do is
defined in the Sprint Goals and Product Backlog. The risk is limited to thirty calendar days of the
team’s Sprint. Management can see how the team’s doing by attending Daily Scrums and, failing
that, can always inspect the most recently updated version of the Sprint Backlog. At the end of the
thirty days, management meets with the team. At the very worse, the team has built nothing. More
often, the team has built something that reflects its best efforts. The team often exceeds expectations.
Once the creative juices get flowing, teams become hotbeds of creativity and productivity. A Sprint is
management’s bet that employees are capable and know what they are doing.

 Once the team commits to the Sprint goal and Product Backlog for the Sprint, it is to
be left utterly alone to do its best to fulfill its commitments. The ScrumMaster is responsible for
monitoring the team and enforcing this rule.

 Most organizations tolerate continual interference in the development process, leading
to teams floundering and experiencing reduced productivity. When Scrum is first introduced into an
organization, the ScrumMaster is a change agent that must politely but firmly enforce this rule.

 The primary tool for the ScrumMaster monitoring for outside interference is
the Daily Scrum. The ScrumMaster must listen closely during this meeting and assess if outside
interference is occurring. If so, the ScrumMaster must redirect the team to continue with its own
work. The ScrumMaster must then work with the source of the external interference to ensure that
the rules are understood and the interference ceases.

125

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.6 Stop External Interference

The team has prepared its Sprint backlog to achieve its goals. At the Daily Scrum meeting, the team
reports on its progress on the various tasks in the Sprint backlog. The ScrumMaster should listen
closely to ensure that the team members are providing status on its relevant to its commitments and
the Sprint Goal. Another source of information is observing the team. If the ScrumMaster detects
out-of-commitment work occurring, he or she should meet with the involved team member(s) to 1.)
determine the source and nature of the external interference, and, 2.) redirect the team members to
continue on the work of the Sprint.

The ScrumMaster is then responsible for meeting with the source(s) of the interference and advising
them of the “no interference” rule. Most organizations tolerate interference. Usual sources are upper
management or other standard setting professionals, such as database administrators or systems
architects. They may, with good intentions, be trying to redirect the team to a better way of doing
work, or to include some work that they view as critical to the team.

The team can ask for advice or seek consultation during the Sprint. However, how it does the work
to which it committed itself is its responsibility alone. If an outside source is so convinced that the
work that the team is doing is wrong or incorrect, the mechanism for them to use is to request that
the ScrumMaster abnormally terminate the Sprint.

If, upon meeting with management and the Product Owner, the ScrumMaster determines that an
abnormal termination is appropriate, the source is the abnormal termination is made visible at the
review meeting that immediately follows the abnormal termination. At that meeting, the source is
required to state their case.

126

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

9.7 Remove Impediments

ScrumMaster

 A responsibility of the ScrumMaster is to optimize the team’s productivity.
Impediments to team productivity that are noticed by the ScrumMaster are to be addressed and
removed in an expeditious manner.

 Scrum often changes the culture of the organization implementing it, from tolerating the
status quo to making changes to optimize productivity. The ScrumMaster is a change agent in
causing these changes to happen. To the extent that the ScrumMaster does this work professionally
and sensitively, the organization benefits. To the extent that the ScrumMaster is unrelenting in
helping the team by removing benefits, the team and the organization benefit. Strike a balance.

 Impediments are identified by team members during the Daily Scrum.
However, the ScrumMaster is also responsible for actively working to detect additional impediments.

 An impediment is anything that stands in the way of the team or team members
being as productive as they can be. Examples are:

1. waiting for software or hardware due to slow purchase order processes;

2. waiting for software or hardware due to slow vendor response;

3. having to attend meetings that weren’t taken into account while planning the Sprint;

4. slow response by business decision makers to questions;

5. network being down; and,

6. inadequate working facilities.

The ScrumMaster notes these impediments by observing the team, or by listening to the team
members report the impediments during the Daily Scrum. When Scrum is first implemented, both
the ScrumMaster and the team may view impediments as business as usual, the normal culture of the
organization. The ScrumMaster’s job it to make the team and the organization aware of the cost of
these impediments, and to help the organization change so the impediments are removed.
Impediments should be the exception, rather than the rule.

127

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10 Daily Scrum

Each Scrum Team meets daily for a 15-minute status meeting called the Daily Scrum. During the
meeting, the team explains what it has accomplished since the last meeting, what it is going to do
before the next meeting, and what obstacles are in its way. The Daily Scrum meeting gets people
used to team-based, rapid, intense, cooperative, courteous development. Daily Scrums improve
communications, eliminate other meetings, identify and remove impediments to development,
highlight and promote quick decision-making, and improve everyone’s level of project knowledge.
That’s a lot of benefit from just 15 minutes a day!

The Daily Scrum is the only formal communication between the team and the people outside the
team during a Sprint. If anyone wants to assess the progress of the team prior to the end of Sprint
Review meeting, they can attend the daily Scrum meeting (as a “chicken”) or inspect the Sprint
Backlog. Nobody outside of the team is allowed to interfere with the team’s time by calling any other
type of review meeting, such as a “design review.” The ScrumMaster should view such a meeting as
an interference and remove the need for any team member to attend.

The Daily Scrum has three purposes:
1. The team members share status with each other.
2. The team members report any impediments or decisions that they can’t make to the ScrumMaster
so that the ScrumMaster can resolve them.
3. Team members and the ScrumMaster get to assess the team through observation.

By listening carefully during a Daily Scrum meeting, managers can get a sense of what the team is
doing and how likely it is to succeed. It is much easier to attend a Daily Scrum than it to read a
written report, and Daily Scrums have the additional benefit of being a boon for the team as well as
for its managers. Scrum is direct and open. Because the reporting interval is only 24 hours, it’s easy
to continuously monitor a team and for the team to monitor and coordinate the work of each other. A
ScrumMaster can quickly see if a team member is up to his ears trying to get a piece of technology to
work or chasing down something for a Vice President. Has a team member lost interest in the
project? Is someone not working because of family problems? Is the team quarreling over some-
thing? What attitudes are demonstrated during the meeting?

The Daily Scrum was initially thought to be a simple status meeting. However, the sociology of
people committing to work daily in front of their peers, and then reporting the next day of their
success in performing the work is complex and profound. This simple act helps the team members
honestly share their successes and problems, and provides an opportunity for the team members to
openly offer to help each other without any negative impression.

The Daily Scrum meeting is brief, usually lasting less than 15 minutes. The ScrumMaster enforces
the brevity of the meeting through the manner in which he or she conducts it.

128

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.02 Setup Facilities for Daily Scrums

ScrumMaster

The ScrumMaster should establish a meeting place and time for the Daily Scrum. The room in which
the Daily Scrum is held is called the Scrum Room. This room is also useful for follow-up meetings
so it should be scheduled accordingly, with buffer time after the Daily Scrum.

The team will hold its Daily Scrum in this room every working day at the same place and same time.
The room should be readily accessible from the team’s primary working location. It should be
equipped with a door (to close during the meeting), a speakerphone (for team members who will
attend by calling-in), a table, at least enough chairs for each team member to sit around the table, and
white boards (for recording notes, issues, and impediments and for general brainstorming after the
Daily Scrum). Of course, Scrum has been successfully implemented in environments that did not
have Scrum Rooms that were this well appointed. The most important thing is that the time and
location of the Daily Scrum be constant. If necessary because an optimal facility isn’t available, start
out by holding Daily Scrums in the corner of a cafeteria, on a lawn, and even in a neighboring coffee
shop. It is always only a matter of time before management sees the value of the Daily Scrum and
provides a Scrum Room, or if management has already provided one, to improve the facilities in the
Scrum Room.

The facility should have adequate space for every team member to attend. Allow additional stand-up
space for visitors to attend. The Scrum room can be a dedicated room, or if the team is collocated in
open space, the team can meet in an area of the open space.

 Ensure an appropriate facility for the Daily Scrum meeting.

 The ScrumMaster is innovative and will find such a facility regardless of the
obstacles.

 None. If such a facility cannot be established, the organization is not ready for Scrum.
Return to the previous manner for conducting development projects.

129

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.02 Setup Facilities for Daily Scrums

Some ScrumMasters prefer that everyone stand during the Daily Scrum, reinforcing the brevity of
the meeting. In these circumstances, the ScrumMaster usually removes the chairs.

A Scrum room might look like this for a eight person team:

130

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.1 Conduct the Daily Scrum

ScrumMaster

 The ScrumMaster is responsible for successfully conducting the Daily Scrum.
The ScrumMaster keeps the Daily Scrum short by enforcing the rules and making sure that people
speak only briefly. This require a fair amount of courage since the rules apply equally to everyone.
It’s difficult to tell a Senior Vice-President not to interrupt.

The ScrumMaster is responsible for ensuring that the Daily Scrum goes well. Scrum Masters ensure
that the room is setup for the meeting. They get any team members working from remote locations
set up on a conference phone before the meeting starts1. Also, they work to minimize the distractions

 Conduct a daily meeting at which the team can coordinate its work, exchange
status, and request assistance in making decisions or removing impediments. The daily meeting is
also an event where people outside the team can observe the team in action.

 The ScrumMaster and team have a suitable meeting place where all team
members can participate, even those not collocated. A suitable time has been determined for the
daily meeting that can be attended by team members who aren’t collocated and are in different
time zones.

 The ScrumMaster isn’t firm enough in conducting the meeting and it becomes a
source of external interference to the team, or the meeting takes too long and wastes valuable
team time. Everyone hates meetings and the Daily Scrum is a good place to demonstrate what an
effective meeting looks like.

131

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

For example, a good ScrumMaster might even set the chairs up around the table before the meeting
begins so that people don’t get caught up in side conversations as they do move chairs around. The
Scrum Master’s job is to increase the productivity of the team in any way possible. This is a small
demonstration of commitment.

Team members commit to a goal and do the work that is required to meet it. They are called pigs
because they, like the pigs in the joke, are committed to the project. Everyone else is a chicken.
Chickens can attend Daily Scrums, but they have to stand on the periphery. Chickens are not allowed
to interfere with the meeting in any way, such as talking, gesticulating, or making crude noises.
Chickens are present as guests and must follow Scrum rules.

The team should arrange themselves in a circle, generally around a focus such as a table. Some
Scrum Teams sit, while others have found that standing encourages brevity. Team members seat
themselves in any order as they arrive. People not on the team sit or stand around the periphery,
outside of the team circle. When guests sit around the table, or interject themselves into the team
circle, they feel free to interject comments, to have side conversations. This disrupts the status from
the team members and makes it hard to control the meeting duration. If they are placed outside the
circle, they are physically reminded that they are observers, and not participants.

Every Pig must be at the meeting on time. The ScrumMaster is responsible for starting the meeting
regardless of attendance. Anyone who arrives late or is absent and hasn’t given the ScrumMaster
their status has to pay $1 to the ScrumMaster. The ScrumMaster keeps these late fees and periodi-
cally donates them to charity.

During the Daily Scrum, only one person talks at a time. That person is the one who is reporting his
or her status. Everyone else listens. There are no side conversations. Starting to his or her immediate
left, the ScrumMaster goes around the room and asks team members to answer three questions.

What have you done since last Scrum? This question addresses only the last 24 hours, unless a
weekend or holiday has occurred in the interim. Team members only mention the things that they
have done that relate to this team and this Sprint. For example, the team isn’t interested in other
work that part-timers might be doing unless it relates directly to their own work. If team members are
doing work other than what they had planned to be doing for this Sprint, that other work should be
identified as an impediment. Anything not related to the team’s work is probably an impediment.

What will you do between now and the next Scrum? This question relates only to this Sprint and
this team. What is each team member planning to work on? The work that team members expect to
do should match the work that has been planned by the team. If team members state that they are
going to be doing other work, they should be asked why. The team might need to meet after the Daily
Scrum to talk about the new work. Other team members have to adjust their work based on the new
work. Getting answers to these questions can helps the team and management assess whether the
work is proceeding regularly and as expected, or if adjustments are needed.

What got in your way of doing work? If a team member was unable to work or anticipates being
unable to work on what he or she planned, what got in his or her way? That is to say, what is getting

10.1 Conduct the Daily Scrum
that occur during the meeting so that everyone can stay focused and the meeting can be kept short.

132

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

The ScrumMaster is responsible for keeping Pig responses to these questions brief and to the point.
They shouldn’t elaborate or describe how the work was done or will be done unless they want to
highlight help that they may need. For instance, a team member may report that he or she intends to
complete implementing a feature in a module, but he or she is having difficulty understanding how a
specific algorithm works. Or the team member may report that he or she is going to check in some
code but can’t get the source code management system to work without crashing.

The Daily Scrum is not a design session and should not turn into a working session, so don’t discuss
design or start to solve a problem. There isn’t enough time or flexibility in the Daily Scrum to begin
working through issues of this magnitude. By limiting the meeting’s scope, the ScrumMaster can
keep the duration in check and constant. If the scope of the Daily Scrum expands, no one will know
how much time to allocate to the meeting.

The rules for the Daily Scrum are:

1. Hold the Daily Scrum in the same place at the same time every work day.

2. All team members are required to attend. If, for some reason, they can’t attend in person,
the absent member must either attend by telephone or by having another team member report
their status for them.

3. Team members must be prompt. The ScrumMaster starts the meeting promptly at the
appointed team regardless. Any members who are late pay $1 to the ScrumMaster
immediately.

4. The ScrumMaster begins the meeting by starting with the person immediately to his or her
left and proceeding counterclockwise around the room until everyone has reported.

5. Each team member should respond to the three questions only (1. What have you done
since the last Daily Scrum regarding this project?, 2.) What will you do between now and the
next Daily Scrum meeting regarding this project?, and, 3.) What impedes you from
performing your work as best as possible?

6. Team members should not digress beyond answering the three questions into issues,
designs, discussion of problems, or gossip. The ScrumMaster is responsible for moving the
reporting along briskly, from person to person.

7. During the Daily Scrum, only one person talks at a time. That person is the one who is
reporting his or her status. Everyone else listens. There are no side conversations.

8. When a team member reports something that is of interest to other team members or needs
the assistance of other team members, any team member can immediately arrange for all
interested parties to meet after the Daily Scrum to setup the meeting or meet right then.

10.1 Conduct the Daily Scrum
in the way of the team? Each team member has planned and committed to a goal and is empirically
figuring out the work to meet the goal. What is slowing down individual team members, and there-
fore the team as a whole? Although team members have worked within the organization and are used
to its culture and style, the ScrumMaster should encourage them to think “outside of the box.” If this
were the perfect work environment, what else would it have? More specifically, what could help the
team be more productive, both as a group of individuals and as a cohesive team?

133

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

10.1 Conduct the Daily Scrum

9. Chickens are not allowed to talk, make observations, make faces, or otherwise make their
presence in the Daily Scrum meeting obtrusive.

10. Pigs or Chickens who cannot or will not conform to the above rules may be excluded
from the meeting (chickens) or removed from the team (pigs).

The ScrumMaster is responsible for keeping a list of all open impediments and decisions in the
Scrum Room, along with when it was first reported, by whom, and status.

134

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.2 Commit and Status

Team

 Every team member must arrive on time for each Daily Scrum. The meeting
starts promptly at the designated time, regardless of who is or is not present. Prior to attending,
prepare answers to the three Daily Scrum questions, listed below:

What have you done since last Scrum? This question addresses only the last 24 hours, unless a
weekend or holiday has occurred in the interim. Team members only mention the things that they
have done that relate to this team and this Sprint. For example, the team isn’t interested in other work
that part-timers might be doing unless it relates directly to their own work. If team members are
doing work other than what they had planned to be doing for this Sprint, that other work should be
identified as an impediment. Anything not related to the team’s work is probably an impediment.

What will you do between now and the next Scrum? This question relates only to this Sprint and
this team. What is each team member planning to work on? The work that team members expect to
do should match the work that has been planned by the team. If team members state that they are
going to be doing other work, they should be asked why. The team might need to meet after the Daily
Scrum to talk about the new work. Other team members have to adjust their work based on the new
work. Getting answers to these questions can helps the team and management assess whether the
work is proceeding regularly and as expected, or if adjustments are needed.

What got in your way of doing work? If a team member was unable to work or anticipates being
unable to work on what he or she planned, what got in his or her way? That is to say, what is getting
in the way of the team? Each team member has planned and committed to a goal and is empirically

 Provide a daily report on daily status and impediments so as to synchronize and
coordinate team activities and optimize productivity.

 A Scrum Room is available and all team members promptly attend the
meeting and answer the three Daily Scrum questions.

 Learning and respecting the mechanics of an effective meeting, such as the Daily
Scrum, requires a shift in attitude and culture in some organizations. Some organizations have not
been able to use Scrum because the culture gets in the way of people showing up on time.

135

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

figuring out the work to meet the goal. What is slowing down individual team members, and there-
fore the team as a whole? Although team members have worked within the organization and are used
to its culture and style, the ScrumMaster should encourage them to think “outside of the box.” If this
were the perfect work environment, what else would it have? More specifically, what could help the
team be more productive, both as a group of individuals and as a cohesive team?

Team members should keep their responses to these questions brief and to the point. They shouldn’t
elaborate or describe how the work was done or will be done unless they want to highlight help that
they may need. For instance, a team member may report that he or she intends to complete
implementing a feature in a module, but he or she is having difficulty understanding how a specific
algorithm works. Or the team member may report that he or she is going to check in some code but
can’t get the source code management system to work without crashing.

If a team member cannot physically attend the Daily Scrum, they should either call in to the
conference phone in the Scrum Room just prior to the meeting, or - as a last alternative - provide
their status to another team member and ask the other team member to report for them.

Establishing Follow-Up Meetings

If any discussion is needed other than the status provided by answering the three questions, a follow-
up meeting may be requested. After a team member gives his or her status, another team member can
interject, “I’d like to address this more after the Scrum. Anyone who’s interested should hang around
afterward.” More than one team member may want to address the topic in more depth. This
conversation may get into discussing design or requirements alternatives or interpretations. A team
member may be working on the same thing and wants to share information. This sharing will be of
indeterminate length and may lead to design discussions. A team member may have done something
like this before or may know an easier way to do the work. This may lead to another team member
suggesting another approach, resulting in a design discussion. A working meeting is needed to reach
a decision or to discuss design or standards. In each of these cases, the conversation that starts is
open-ended. Other team members may join in and more time will go by. All of these discussions are
worthwhile and should happen. They should happen after the Daily Scrum, though. Keep all working
sessions outside of the Daily Scrum, or else the distinction between a status session and a working
session will become blurred and the time for the Scrum won’t remain short and fixed.

10.2 Commit and Status

136

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.3 Make Decisions

Product Owner, ScrumMaster, Team

 A Scrum team has the full authority to make all of the decisions necessary to
turn the Product Backlog into a Product Increment to meet the Sprint Goal. The team is free to do
whatever is necessary to make the best decision possible. The team members can interview others,
bring in consultants, read books, browse the web, whatever they need. A team member may identify
indecision as an impediment (e.g. “I don’t know if I should do this or that.”). The ScrumMaster is
then responsible for making a decision, preferably then and there. When first implementing Scrum
for a team, the ScrumMaster should be careful not to make too many decisions for the team. Del-
egated decision-making is new in most organizations. The ScrumMaster helps the team learn to
make its own decisions to fulfill its commitments. The more the team relies on outsiders to make its
decisions, the less control it has over its commitments.

When the team is uncertain, it should acquire whatever information is necessary to become more
certain. Sometimes a team asks for a decision to be made when it feels that the decision is risky, or
sensitive. In this case, the ScrumMaster should meet with the team after the Daily Scrum and work
through to a decision. A team should make a decision by acting on the best information that it has
and by relying on its instincts. Most snap decisions are more acceptable than holding up work to
wait for someone else to decide. The team usually has a far better handle on the alternatives than
anyone else. Also, completed work has momentum and usually will be “good enough,” or at the very
least, it will be far better nothing.

Most of the time the decision will be acceptable. Sometimes, though, a decision results in unaccept-

 Provide a mechanism for team members getting quick resolution to decisions that
they are unable to make themselves and cannot otherwise find the appropriate party to make the
decision for them.

 The ScrumMaster has encouraged the team to make decisions on its own
when a quick answer isn’t available. Only if the team member is uncomfortable with their domain
knowledge and can’t get help should decisions be brought to the Daily Scrum. Scrum is intended
to encourage the team to do the required analysis and design behind decisions.

 Team members shouldn’t feel obligated to make decisions that are holding them up,
nor should they sway too far to asking someone else to make all decisions for them.

137

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

able product functionality or application of technology. This becomes apparent when the product
increment is reviewed at the end of the Sprint. If an incorrect decision isn’t visible at this review, it is
probably irrelevant. Otherwise work can be redone to correct the bad decision. Because Sprints are
so short, bad decisions rarely impact more than thirty days worth of work.

If the ScrumMaster can’t make a decision during the meeting, he or she is responsible for making a
decision and communicating it to the whole team within one hour after the end of the Scrum.

10.3 Make Decisions

138

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.4 Remove Impediments

ScrumMaster, Team

If a team member identifies something that is stopping him or her from working effectively, the
ScrumMaster is responsible for recording and removing that obstacle. Impediments should be written
down on the white board on the wall. If the ScrumMaster doesn’t fully understand the impediment,
he or she should meet with whoever mentioned it after the Scrum Meeting to learn about it. The
following are common impediments:

· workstation, network, and/or server are down;
· network or server are slow;
· required to attend human resource training session;
· required to attend status meeting with management;
· asked by management to do something else;
· asked to do something other than what this team member committed to for this sprint;
· unsure about how to proceed;
· unsure of design decision; and,
· unsure how to use technology.

The Scrum Master’s top priority is removing impediments. If team members inform the
ScrumMaster that he or she can do something to make them more productive, the ScrumMaster
should do it. Every day, the Scrum gives the ScrumMaster direct information on what he or she can
do to improve the productivity of the team.

 To quickly identify impediments to the team’s productivity and progress.

 Team members understand that impediments are not personal weaknesses and
that the team should want them removed by management. This is the role of the ScrumMaster and
the team should utilize it.

 Initially, team members may accept impediments as part of doing business at their
organization. Only when they realize that the ScrumMaster’s job is to remove impediments will
they start looking for an identifying them. The ScrumMaster should encourage this by observing
the team and identifying impediments initially for it.

139

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

If the impediments aren’t promptly resolved, the team will report the next day that it is still impeded.
It is a bad sign if the team members stop reporting impediments even though they haven’t been
resolved. This usually means that the team members have lost their confidence that the ScrumMaster
can and will resolve their impediments. If, for some good reason, an impediment cannot be removed,
the ScrumMaster should report on this at the next Daily Scrum.

If the open impediments on the white board start getting to be a lengthy list, this may indicate that
the larger organization isn’t supporting the team. In this case, the ScrumMaster may end up having to
abnormally terminate the Sprint. This is a very powerful card to play. It should be played only when
the ScrumMaster is very concerned that the organization’s support for the project is so low as to
render the team ineffective and demoralized. Low support could be because this is an unimportant
project or because the organization is unable to effectively support any projects. The reason doesn’t
matter to this project. The ScrumMaster has observed that there are many impediments and manage-
ment is unwilling or unable to remove them. The ScrumMaster should very carefully and intensely
discuss these observations and the consequences of the lack of support with management before
canceling the Sprint. Once the decision has been made to cancel the Sprint, the ScrumMaster is
effectively stating that the organization shouldn’t implement Scrum on this project at this time.

 10.4 Impediments

140

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

10.5 Attend the Daily Scrum

Chickens

 The chickens will be unable to resist talking, helping, and giving direction and guidance
as they listen to the status at the Daily Scrum.

 People who are not part of the team but who want to be aware of the project status
during a Sprint are invited to attend any Daily Scrum meeting. These people are called “chickens” to
differentiate them from the “pigs” on the team.

 The ScrumMaster has provided a mechanism for anyone interested to learn
the location and time of the Daily Scrum meeting for each project team.

 Anyone who wants to learn about the status of a project team during a Sprint is
invited to attend the team’s Daily Scrum meeting. Anyone attending as a chicken is required to
adhere to the following rules, enforced by the ScrumMaster:

1. Chickens are not allowed to make their presence known by any means, such as talking or
facial expressions;

2. Chickens stand on the periphery of the team so as not to interfere with the meeting;

3. If too many chickens attend the meeting, the ScrumMaster may limit attendance so the
meeting can remain orderly and focused; and,

4. Chickens are not allowed to talk with team members after the meeting for clarification or
to provide advice or instructions.

During the Sprint, the Scrum team is responsible for management of its own activities to meet the
commitments it made at the start of the Sprint. Except for the case of an Abnormal Termination of
the Sprint, nobody has authority over the team during the Sprint.

141

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 10.6 Scrum of Scrums

ScrumMaster, Team

 The Scrum of Scrum meetings coordinate multiple teams in projects that have been
scaled above a single team. Just as teams are optimized around seven people, each level of scaling
should be held to around seven groups that are coordinating themselves. As the coordinating
meetings go up the hierarchy, the frequency of the meetings can decrease from daily to less
frequently. Finely granulated coordination happens at the team level, coarsely granulated
coordination happens after several levels of elevation.

 The project can’t be done with a single team, or the number of people who
need to be involved exceeds the limits of one team’s size.

 Someone must be responsible for coordinating the entire mechanism and ensuring that
each level meets frequently enough to synchronize the entire hierarchical mechanism.

 Any system can be built with one Scrum team, consisting of approximately
seven people. When there are numerous requirements and the time one team would need to develop
them is unacceptable, additional teams are formed. People trained in traditional project management
practices lay out a PERT chart that defines all the work. Elements that are as orthogonal (Orthogonal,
mutually perpendicular) to each other as possible are then identified. Each element will yield code
and functionality that’s as cohesive as possible and will minimize couplings – or dependencies – on
other parts of the system. These orthogonal1 areas of work form the basis for team assignments.

Scrum uses the same project management practices to allow multiple teams to undertake
development. However, the work is apportioned from a systems architecture rather than from a
PERT chart. Similar to staging complex system development, construction of systems architecture is
staged in the initial Product Backlog. A single team builds the architecture in the initial Sprint and
the Product Backlog requirements are mapped to the various orthogonal subsystems. As new
requirements emerge, they also are mapped to the subsystems.

142

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

After the first Sprint, management can establish multiple teams. Each team is assigned to one or
more orthogonal subsystems. Prior to each Sprint, each team selects work from the Product Backlog,
in order of priority, by the subsystem to which they’re assigned. This way, teams can develop
functionality with as little dependencies and impediments as possible.

Orthogonality is a great concept, but it’s rarely achieved in systems development. Things wind up
being somewhat dependent on each other no matter how hard team members teams try. Teams must
be coordinated and aware of other teams’ work, progress, and issues.

Scrum projects have daily status meetings, or “daily Scrums.” These are short status meetings of no
more than 15 minutes, in which each team member answers three questions: 1) What have I done
since the last daily Scrum?; 2) What am I planning on doing between now and the next daily Scrum?,
and 3) What is impeding my work? These meetings are used to coordinate work within and across
teams.

To coordinate the work
between teams, I usually
institute “Scrum of
Scrum” meetings. After
the daily Scrums,
another daily Scrum is
conducted with a
representative from each
team. This meeting
synchronizes and
coordinates the work of
various teams.
Representatives from
each team answer the
same three questions,
but from their teams’
perspectives. What
comes out of this
meeting is the status of
each teams.

 In Figure 5, each teams meet for their daily Scrums from 9 to 9:45 am., followed by the Scrum of
Scrums at 9:45. This assumes that the ScrumMaster is used for all teams. If each team has its own
ScrumMaster, all teams can meet simultaneously (say, at 9:00), and then have the synchronizing
meeting shortly thereafter.

10.6 Scrum of Scrums

143

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

This idea of “Scrum of Scrum” can filter upward. To avoid having the day become too cluttered with
these meetings, though, the daily Scrums further up in the hierarchy are held less frequently, but at
least weekly.

The figure below provides a graphic representation of the idea of multiple levels of coordination
between Scrum teams. This graphic was provided through permission of Mike Cohn of Mountain
Goat Software.

10.6 Scrum of Scrums

144

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11 End of Sprint Review

The Sprint Review meeting is a four-hour informational meeting. During this meeting, the team
presents to management, customers, users, and the Product Owner the product increment that it has
built during the Sprint.

The Sprint Review provides an inspection of project progress at the end of a Sprint, every thirty
calendar days. Based on the inspection, adaptations can be made to the project. The team has esti-
mated where it will be at the end of the Sprint and set its course accordingly. At the end of the Sprint,
the team presents the product increment that it has been able to build. Management, customers,
users, and the Product Owner assess the product increment. They listen to the tales the team has to
tell about its journey during the Sprint. They hear what went wrong and what went right. They take a
fix on where they really are on their voyage of building the product and system. After all of this, they
are able to make an informed decision about what to do next. In other words, they determine the best
course to take in order reach their intended destination. Just like “shooting the stars” provides regu-
larity to shipboard life, the thirty-day Sprint cycle provides a meaningful rhythm in the team’s life
and even in the company’s life. The Sprint Review meeting happens
every thirty days, and the team builds product during the other twenty-
nine days.

Different groups of people attend the Sprint Review. Management comes
to the Sprint Review to see what the team has been able to build with the
resources that it has provided. Customers come to the Sprint Review to
see if they like what the team has built. The Product Owner comes to the
Sprint Review to see how much functionality has been built. Other
engineers and developers come to the meeting to see what the team was
able to do with the technology. Everyone wants to see what the team has
built, what the Sprint was like, how the technology worked, what short-
cuts had to be taken, what things it was able to add, and its ideas there
are as to what can be done next.

During the meeting, everyone visualizes the demonstrated product functionality working in the
customer or user environment. As this is visualized, consider what functionality might be added in
the next Sprint. The product increment is the focal point for brainstorming. For example, someone
could suggest the following after seeing the product increment demonstrated: “If we did controlled
patient costs manually, we could use this right now in registration!” or “This would solve the prob-
lems that we’re having tracking inventory in the districts. What would we have to do to make this
work off the inventory database?” As the team demonstrates the product increment, it helps the
attendees understand the weaknesses and strengths of the product increments, and the difficulties
and successes it experienced pulling it together.

145

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11 End of Sprint Review

No one should prepare extensively for the meeting. In order to enforce this rule, PowerPoint presen-
tations are forbidden. If the team feels that it has to spend more than two hours preparing for the
meeting, then it is usually has less to show for the Sprint than it had hoped, and it is trying to obscure
this fact with a fancy presentation. Sprint Review Meetings are very informal. At these meetings,
what matters is the product the team has been able to create. The Sprint Review is a working meet-
ing. Questions, observations, discussions and suggestions are allowed, and even encouraged. If a lot
of give and take is needed, it should happen. Remember, though, that the meeting is informational,
not critical or action-oriented. Everyone should get an understanding of the product increment, as
this is the knowledge that they will need for the Sprint Planning meeting.

146

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 11.1 Conduct Review

ScrumMaster

The ScrumMaster is responsible for coordinating and conducting the Sprint Review meeting. The
ScrumMaster meets with the team to establish the agenda and discuss how the Sprint results will be
presented and by whom. The ScrumMaster sends all attendees a reminder a week before the
meeting, confirming the time, date, location, attendees, and agenda.

An agenda is:

1. ScrumMaster provides review of Sprint goals, functionality chosen and functionality
actually developed and to be demonstrated.

2. Team provides overview of the Sprint and functionality.

3. Team demonstrates the functionality on various workstations. Sometimes, if the audience
is large, various team members demonstrate different pieces of functionality simultaneously
until everyone has seen everything.

4. Meeting reconvenes and ScrumMaster facilitates a discussion of impressions and
observations on what was just demonstrated.

5. ScrumMaster facilitates Sprint retrospective, a discussion of what went right and what
went wrong in the Sprint, and what can be done to improve the next Sprint.

6. ScrumMaster facilitates a discussion of the impact and implications of the demonstrated
functionality of the project schedule and product backlog.

7. ScrumMaster announces time and place of the Sprint Planning meeting that will initiate
the next Sprint.

 This meeting is a presentation by the team that invites comments and questions from the
Product Owner, customers, users, and other attendees. Make sure all of the comments are understood
and captured for use in the Sprint Planning Meeting. Also, keep the tone of the meeting constructive.

 The ScrumMaster has scheduled this meeting during the Sprint Planning
meeting and the meeting is conducted on the last day of the Sprint.

 The Sprint Review meeting is a four-hour informational meeting. During this
meeting, the team presents to management, customers, users, and the Product Owner the product
increment that it has built during the Sprint. The ScrumMaster is responsible for scheduling, setting
up, and ensuring that all of the agenda items are covered.

147

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

The best presentations usually start with the ScrumMaster giving a concise overview of the Sprint.
The Sprint goal and Product Backlog are compared to the actual results of the Sprint, and reasons for
any discrepancies are discussed. A team member can display and review a simple product
architecture diagram. The most effective architecture diagrams display both the technical and
functional architecture. Previously completed technology and functions are highlighted on the
diagram. Technology and functionality produced during the past Sprint are then added onto the
diagram, and team members demonstrate the functionality as it is added to the diagram. For the most
part, the Sprint Review meeting is held in just one place, but during the demonstration of product
functionality, the meeting will often move from one workstation and office to another.

 11.1 Conduct Review

148

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.2 Demonstrate Functionality

Team

To prepare for the meeting, the team considers what attendees need to see in order to understand
what has been developed during the Sprint. The team wants everyone to understand as many dimen-
sions of the product increment as possible. What should attendees learn from this meeting? They
should gain an understanding the system and technical architecture and design that holds the product
together, as well as the functionality that has been built onto the architecture. They should be famil-
iarized with the strength and weaknesses of the design and technology so they will know what
limitations to be taken account of and what advantages to leverage when planning the next Sprint.

A team member can display and review a simple product architecture diagram. The most effective
architecture diagrams display both the technical and functional architecture. Previously completed
technology and functions are highlighted on the diagram. Technology and functionality produced
during the past Sprint are then added onto the diagram, and team members demonstrate the function-
ality as it is added to the diagram. For the most part, the Sprint Review meeting is held in just one
place, but during the demonstration of product functionality, the meeting will often move from one
workstation and office to another.

As part of the meeting, the team should be prepared to discuss what it felt went well during the
Sprint, and what didn’t go so well. Whenever possible, have recommendations about what could be
done to improve the next Sprint.
During the meeting, everyone visualizes the demonstrated product functionality working in the
customer or user environment. As this is visualized, consider what functionality might be added in

 The team committed to a Sprint Goal and developing product functionality at the
Sprint Planning meeting. Thirty calendar days later, the team is responsible for demonstrating the
working functionality to the Product Owner and other interested parties. The team should spend no
more than 1 hour preparing for this meeting. The only thing that actually matters is the working
functionality; everything else is an artifact that led to it. The only thing that actually matters is the
working functionality; everything else is an artifact that led to it.

 The team has developed product functionality as a potentially shippable
increment of the system. This means that the quality is high, both internally and externally, and that
all artifacts required for the system to potentially ship have also been created. These might include
user documentation, traceability maps, or performance models, depending upon the application and
its intended use.

 The meeting provides an opportunity to demonstrate working functionality. This is not a
formal presentation that is extensively prepped and propped. Demonstrate the functionality where it
was developed, on the workstations, development server, or - even better - the QA server.

149

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

the next Sprint. The product increment is the focal point for brainstorming. For example, someone
could suggest the following after seeing the product increment demonstrated: “If we did controlled
patient costs manually, we could use this right now in registration!” or “This would solve the prob-
lems that we’re having tracking inventory in the districts. What would we have to do to make this
work off the inventory database?” As the team demonstrates the product increment, it helps the
attendees understand the weaknesses and strengths of the product increments, and the difficulties and
successes it experienced pulling it together.

Sometimes the team uses a model of their progress through the business and systems architecture
models created during the Planning phase. This is a precursor to the actual demonstration and helps
the customers, stakeholders, and Product Owner understand the context and depth of what is being
demonstrated. An example of a business architecture model being used for these purposes is pre-
sented below:

 11.2 Demonstrate Functionality

150

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.3 Evaluate the Functionality

Product Owner

 The team committed to a Sprint Goal and developing product functionality at the
Sprint Planning meeting. Thirty calendar days later, the team is responsible for demonstrating the
working functionality to the Product Owner and other interested parties. The Product Owner is
responsible for evaluating this functionality and using this understanding as a key input to
formulating the next Sprint.

 The demonstrated product functionality is potentially shippable. That is, the
functionality is of acceptable quality with accompanying material that if the Product Owner chose to
release or implement it, only a modest release Sprint would be required to package the functionality.

 The functionality demonstrated is not of release quality. If it isn’t, product backlog must
be created to bring it this quality level.

 The team committed to a Sprint Goal and developing product functionality at
the Sprint Planning meeting. The Product Owner, customers, users, and management are responsible
for assessing the work of the team in relation to their expectations.

The functionality is demonstrated rather than talked about or models of it displayed. In this manner,
the Product Owner and others can directly respond to the reality of the work.

151

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 11.4 Manage the Release

 Product Owner

 The team has demonstrated the functionality that it was able to develop during the
Sprint. The Product Backlog that described this functionality needs to be assessed so that they
Product Backlog list can be made as accurate as possible.

 The demonstrated product functionality is potentially shippable. That is, the
functionality is of acceptable quality with accompanying material that if the Product Owner chose to
release or implement it, only a modest release Sprint would be required to package the functionality.

 If the functionality that the team demonstrated and delivered is different from
the Product Backlog that it selected at the Sprint Planning meeting, the Product Backlog needs to be
adjusted by the Product Owner. The following adjustments may be made:

- If some functionality was not developed, the requirements for this functionality needs to be placed
back on the Product Backlog;
- If some functionality was developed with less completeness or depth than required for release and
implementation, requirements for the functionality to be completely developed needs to be placed on
the Product Backlog;
- If the selected technologies are not adequate to deliver the expected value, additional nonfunctional
requirements need to be placed on the Product Backlog;
- If the development, QA, or production environments are inadequate or can be optimized to increase
productivity, nonfunctional requirements need to be placed on the Product Backlog; and,
- If the team selected and completed additional functionality that addresses Product Backlog not
initially selected for the Sprint, these items need to be removed from the Product Backlog.

As a consequence of seeing what the team was able to develop during the Sprint, the Product
Manager may need to make adjustments. Possibilities include:

152

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.4 Manage the Release

- Restoring unfinished functionality to the Product Backlog and prioritizing it.
-. Removing functionality from the Product Backlog that the team unexpectedly completed.
- Working with the ScrumMaster to reformulate the team.
- Reprioritizing the Product Backlog to take advantage of opportunities that the demonstrated
functionality present.
- Ask for a release Sprint to implement the demonstrated functionality, alone or with increments
from previous Sprints.
- Choosing not to proceed further with the project and not authorizing another Sprint.
- Requesting that the project progress be sped up by authorizing additional teams to work on the
Product Backlog.

The Product Manager is responsible for empirically manage plan and commitments at the end of
every increment to achieve ROI by:

• Modifying requirements or priorities
• Adjusting costs
• Changing team content
• Changing release or Sprint content plans
• Call for a release

This is achieved through collaboration between busi-
ness project manager, IT project manager, team, users,
and other management. They always want to investigate
and modify the four variables of a project to maximize
business values, where these variables are the cost, date,
quality, and functionality. Business value is a function
of cost, quality, time, and functionality. Scrum enables
value driven projects which leave the determination of
the four variables tot he Product Owner throughout the
project. This happens by the Product Owner only com-
mitting to one Sprint at a time, and is free to change any
of the variables based on progress to date and the
business value that is provided.

153

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.5 Sprint Retrospective
Team, Product Owner, ScrumMaster

 The Scrum process works out of the box. However, as organizations understand it
they often want to make modifications to make it suit their environment better. Also, when the
project was formulated, staffing, tools, and environments were selected. As the project progresses,
these also may require adjusting.

 The retrospective is a collaborative process involving all members of the team,
the Product Owner, and the ScrumMaster.

 After every Sprint, everyone on the project takes time to reflect. What went
well in the Sprint? What went not so well? What could be improved? What did we do that we want
to continue doing?

When the project is started, the inputs are the Scrum process, the ScrumMaster, the Product Owner,
the business domain experts, the team(s), the development and QA environments, the engineering
practices and standards, and the technologies. The basis of Scrum is inspect and adapt. This Sprint
Retrospective is the time to inspect all of the above items, and anything else that affects the project,
and to make adjustments so that the team can do better. Nothing is out of bounds in this discussion,
which is intended to be open and fruitful. The ScrumMaster has had excellent visibility into the

project for the last Sprint and is expected to have the most suggestions.

154

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.6 Project and Sprint Reporting

Product Owner, ScrumMaster

 The project managers report periodically on progress. These reports can include
such standard verbiage as issues, risks, assessment of progress, and discussion of changes. These
reports should resonate with the expectations and metrics established during the planning phase. The
following were recommended to be established at that time:

- Release Schedule - planning out the various releases and their goals and expected impact;

- Product Backlog - what functionality will probably be build and delivered when, and as part of
what release; and,

- ROI analysis based on the cost/benefit and expense/revenue spreadsheets.

Reporting usually occurs at two levels. A summary level is appropriate for those who wish to be
aware of the projects overall progress. A detailed level is appropriate for management that is wants to
know both the overall progress and why deviations are occurring.

The basis of the summary reporting is a projection of the cost/benefit models prepared during the
planning phase across time.

 When the project was funded, expectations regarding costs, benefits, releases, and
progress were established. These expectations are revisited at the end of every Sprint and
management reports tracking the project and discussing any changes or modifications are detailed in
management reports.

 Most management reporting for projects talks about work, percent of work done, and
milestones. Scrum reporting talks about functionality completed, progress toward being able to
release functionality, and costs versus benefits. The transition from one reporting structure to another
may not be easy. In some cases, prepare both types of reports so that management can relate the new
type of reports to previous reports. Report in person whenever possible.

 The people to whom the project is reporting are aware that Scrum and
iterative, incremental development are being used.

155

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.6 Project and Sprint Reporting
For instance, the figure below charts the expected costs and benefits, both as they occur and
cumulatively. Upper line is monthly summary of costs and benefits
Lower line is cumulative by month, showing break even expectation at month 22. This expectation
was set with management during the planning phase as part of acquiring funding for the project.

The next figure shows the impact of
the release planned at month 5, at
which point benefits should have
started to accrue, being delayed until
month 8 (with subsequent delay of
other planned releases.

In this figure, there are two sets of
lines. The upper set tracks monthly
expenses and benefits (run rates).
The upper line is the planned, the
bottom line the actual with
projections.

The lower of lines tracks the
cumulative cost/benefit curve. The

upper of the two lines
tracks the plan, the lower
of the two lines tracks the
actual and projected.

In the plan vs actual report,
breakeven has moved out
from the 22nd month to the
25th month.

In this report, the Product
Owner ascribes the later
release to the lack of
business domain expertise,
which will be resolved
with new team members in
the upcoming Sprints.

156

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.6 Project and Sprint Reporting
In the third report, the
Product Owner is able to
demonstrate that the break
even point can now be
projected as returning to the
22nd month due to greater
productivity since the
addition of the domain
experts at the end of the
fifth month. In the lower set
of lines representing a
plotting of cumulative cost/
benefits, the projection at
the end of the twelfth month
shows the pulling together
of the cumulative cost/
benefits due to this
increased productivity.

Detailed reporting is done at the end of each Sprint to
management that tracks the project’s progress more
closely. The most appropriate reporting in Scrum is
the frequent end of Sprint evaluation of the
functionality that the team built that Sprint. The
reporting shows how that functionality compares
historically with expectations and lays out an action
plan if that progress is inadequate or needs revision.

At the start of a project, the Product Backlog was
prepared. The Product Backlog consisted of the
functional and nonfunctional requirements prioritized
into a list. At specified dates, releases were indicated.
The releases were described in terms of goals and
expectations to be met by the delivery of the
functionality. Sprints, with intermediate goals, were
predicted that would lead to the delivery of the
release.

At the end of every Sprint, the Product Backlog is
revised based on actual functionality demonstrated.
The incomplete functionality is returned to the
Product Backlog.

157

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.6 Project and Sprint Reporting
The Product Backlog has also changed due to changes in the business environment. What was
important at the start of the Sprint may be more or less important at the end of the Sprint. A new
Product Backlog is constructed now indicating the new Product Backlog contents and priorities,
along with any changes to release dates and contents, as indicated by where the release line is
inserted into the Product Backlog.

Accompanying the prior and current
Product Backlogs is ana analysis
report, indicating all of the major and
minor changes, as well as the cause
for the changes. Changes made to the
project that will affect its productivity
are also indicated, such as the addition
of domain expertise in the above
examples.

A series of these comparisons
represents the project history from a
management reporting aspect.

At the core of these detailed reports,
are the following:

- ROI Analysis – a comparison of ROI
as documented by the updated ROI
gauges compared to the ROI projected
at the start of the project and in the
previous status report.

- Product Backlog analysis – a
discussion of the Product Backlog

presented at the previous status report with the current backlog. The discussion includes why
priorities have changed and why release dates have changed. Early implementation reasoning
is presented.

- Recommendations – based on the ROI and Product Backlog analysis, what changes are
recommended? Since Scrum is iterative, costs can be increased or decreased by adding or
reducing teams. Changes in release schedules may be recommended for competitive reasons.

Reporting should be based on the Product Backlog and changes made to its content, priorities, Sprint
schedules and release schedules from initial expectations and the previous Sprint reports. Burndown
charts should be used to demonstrate progress against expectations, demonstrating probable trends.

158

Activity ID:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

11.6 Project and Sprint Reporting

Progress reporting is also sometimes augmented with updates to the business and system architecture
models that were constructed during the Planning phase. This provides visual details that supple-
ment the ROI and Product Backlog reporting and allows customers to visually track project progress.

An example of progress tracking after the first Sprint of a project is provided below. Progress is
indicated on the business architecture model through color coding.

159

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 11.7 Attend the Sprint Review

Chickens

 People who are not part of the team but who want to be aware of the project status at
the end of the Sprint are invited to attend the end of Sprint Review. These people are called
“chickens” to differentiate them from the “pigs” on the team.

 The ScrumMaster has provided a mechanism for anyone interested to learn the
location and time of the Sprint Review meeting. Those interested include all stakeholders in the
project, including customers, users, sources of funding, and other technology parties.

 The meeting gets out of hand because of too many viewpoints or conflicting agenda.

 The following rules apply to the Chickens at the Sprint Review and are applied
by the ScrumMaster:

1. Chickens are not allowed to interrupt the presentations;
2. Chickens are free to voice any comments, observations, or critiques regarding the increment of
potentially shippable product functionality between presentations;
3. The chickens can identify functionality that wasn’t delivered or wasn’t delivered as expected and
request that such functionality be placed in the Product Backlog for prioritization;
4. The chickens can identify any new functionality that occurs to them as they view the presentation
and request that the functionality be added to the Product Backlog for prioritization;
3. If too many chickens attend the meeting, the ScrumMaster may limit attendance so the meeting
can remain orderly and focused.

160

Phase Name:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

12 Create a Release

Under Construction

161

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

 12.1 Create Product Backlog

Product Owner

Under Construction

162

Description:

Risks:

Assumptions:

Purpose:

Activity ID:

Responsible:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

12.2 Initiate Sprints to Build Release

ScrumMaster

Under Construction

163

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Scrum introduces the concept of workload management to systems development. Workload
management involves controlling development of functionality and release dates in order to optimize
the value to the organization of the system being developed. This is different from work
management, in which the specific tasks involved in building a system are directed.

Scrum makes workload management possible through iterative, incremental development using
thirty day iterations called Sprints. An increment of functionality is ready by the end of every Sprint.
The term “ready” here means potentially shippable or able to be implemented. “Ready” means
complete, including user documentation, and having been tested fully.

Traditional development methodologies fully analyze and design a system before coding it. Testing
usually follows the coding. It is not until the very end of the project that the system can be
implemented. The opportunities for managing this workload to optimize value are limited and are
usually not even considerable. However, Scrum makes it possible to perform analysis, design,
testing, coding and documentation in every Sprint. This provides management with many
opportunities to do the following:

1. arrange the sequence in which functionality is iteratively developed so that the most valuable
functionality is built first;

2. continue to rearrange the sequence of functionality development as the project progresses and
business priorities change; and,

3. group increments of functionality into more frequent releases, allowing the business to
realize early and frequent benefits.

Consider a system that will bring the organization $1,000,000 dollars in benefits in the first two
years after its implementation. Using traditional methods, the system would take one year to
develop, and its development would cost $400,000. Agile processes let us develop and implement
the system’s functionality selectively and incrementally by doing the following:

1. listing the functionality of the system, with more attention to the highest value and priority
functionality;

2. dividing the functionality list into two releases, the first estimated to be ready six month after
development begins;

3. using iterative, incremental development to complete the first release within six months for
$200,000;

4. allowing benefits worth $800,000 to begin accruing after just six months, with the
functionality that will deliver the remaining value scheduled to be developed during the
second Sprint; and,

5. permitting the second implementation to be deferred if it is not deemed cost effective and the
benefits of the first implementation are deemed sufficient—for example, if the development
cost of $200k for the less valuable functionality would generate only $200k in benefits.

Roles and Responsibilities - Product Owner

164

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Workload management such as is described in this example is made possible by agile processes. In
this case, the customer had an opportunity to realize $800k in benefits six months earlier than would
otherwise have been possible. The customer also had the opportunity to choose not to spend an
additional $200k for break-even functionality. The time and effort that would have gone into the
second Sprint could instead be allocated to other higher priority projects. The benefits of multiple
releases are somewhat offset by implementation costs.

Strategic and competitive systems are able to gain marketplace advantage through such incremental
strategies. Imagine that your competition uses traditional development approaches to prepare a single
new release or business capability, but your organization uses agile processes to produce early and
repeated competitive advantages. If this is the case, then your organization is able to capture the
advantage more effectively and thoroughly.

An additional benefit of workload management is inventory reduction. As in manufacturing,
unfinished “raw goods” software inventory is an undesirable cost. It may need to be reworked if it
has defects. It may never even be used if production costs are too high or demand for the software
evaporates. Yet traditional development methodologies amass huge inventories of analysis, design,
and coding artifacts even as business changes render them obsolete. The agile approach minimizes
the extent to which an organization accumulates such artifacts. Only those artifacts that are necessary
to build each iteration’s increment of functionality—the highest priority functionality—are built.

This role of workload management is a key new role afforded by agile processes. This role is referred
to as “the Customer” in Extreme Programming and as “the Product Owner” in Scrum. These roles
have responsibilities that enable the realization of the benefits of workload management. The
Product Owner executes this role through active management of an inventory called Product
Backlog. The Customer executes this role through active management of an inventory of Product
Backlog.

Let’s look more closely at Product Backlog. Product Backlog is a simple list of requirements for the
system. Each item on the list is a single line in length. Functional requirements, such as “the ability
to calculate available credit,” are listed along with nonfunctional requirements, such as “the capacity
to handle up to 100,000 simultaneous transactions with sub-second response time.” Product Backlog
is often maintained in spreadsheet format so that it can be easily manipulated and interpreted.

The Product Backlog is a prioritized list. Items at the top of the list are those that will deliver the
most business value. Business priorities can change over the course of the project, and consequently
the order of the list can change as well. Dependent functionality, or functionality that is required to
support highest priority backlog, is of an even higher priority. Each backlog item is a one-line
description of the requirement. An estimate of how it will take developers to turn the functionality
into an increment of potentially shippable product is included in each backlog item.

The Product Owner doesn’t have to specify all the details of every entry in the Product Backlog. The
Product Owner extracts requirements from the systems plan, focusing on the highest priority Product
Backlog first. At first, the Product Owner needs to list only as much Product Backlog as is needed to
drive the first probable release. The lower priority functionality can be itemized and delivered only
when it is deemed to be the highest priority available functionality. Even then, its development may
be deferred if it costs more than it is worth.

Roles and Responsibilities - Product Owner

165

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Roles and Responsibilities - Product Owner

Only one person is responsible for managing and controlling the Product Backlog. This person is
referred to as the Product Owner. For commercial development, the Product Owner may be the
product manager. For in-house development efforts, the Product Owner could be the project man-
ager, or the user department manager. This is the person who is officially responsible for the project.
This person maintains the Product Backlog and ensures that it is visible to everyone. Everyone
knows what items have the highest priority and so everyone knows what will be worked on.

The Product Owner is one person, not a committee. Committees may exist that advise or influence
this person, but any person or body of people wanting an item’s priority changed has to convince the
Product Owner to make the change. Organizations have many ways of setting priorities and require-
ments. These practices will be influenced by Scrum across time, particularly through the meeting that
reviews product increments (Sprint Review). The practice that Scrum adds is that only one person is
responsible for maintaining and sustaining the content and priority of a single Product Backlog.
Otherwise, multiple conflicting lists flourish and the Scrum teams don’t know which list to listen to.
Without a single Product Owner, far too much floundering, spin, contention, and frustration will
result.

166

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Roles and Responsibilities - ScrumMaster

A new management role introduced by Scrum is the ScrumMaster. The ScrumMaster is responsible
for ensuring that Scrum values, practices, and rules are enacted and enforced. The ScrumMaster
represents management to the team and represents the team to management. At the Daily Scrum, the
ScrumMaster listens closely to what each team member reports. He or she compares what progress
has been made to what was progress was expected, based on Sprint goals and predictions made
during the previous Daily Scrum. For example, if someone has been working on a trivial task for
three days, it is likely that team member needs help. The ScrumMaster tries to gauge the velocity of
the team: is it stuck, is it floundering, is it making progress? If the team needs help, the ScrumMaster
meets with it to see what he or she can do to help.

The ScrumMaster works with the customers and management to identify and works with the cus-
tomers and management to select a Product Owner. The ScrumMaster works with management to
form Scrum teams. The ScrumMaster then works with the Product Owner and the Scrum teams to
create Product Backlog for a Sprint. The ScrumMaster works with the Scrum teams to plan and
initiate the Sprint. During the Sprint, the ScrumMaster conducts all Daily Scrums, and is responsible
for ensuring that impediments are promptly removed and decisions are promptly made. The
ScrumMaster is also responsible for working with management to gauge progress and reducing
backlog.

The Team Leader, Project Leader, or Project Manager often assume the ScrumMaster role. Scrum
provides this person with the structure to effectively carry out Scrum’s new way of building systems.
If it’s likely that many impediment will have to be initially removed, this position may be filled by a
senior manager or a Scrum consultant.

How does the ScrumMaster keep the team working at the highest possible level of productivity? The
ScrumMaster does so primarily by making decisions and removing impediments. When decisions
need to be made in the Daily Scrum, the ScrumMaster is responsible for making the decisions
immediately, even with incomplete information. I’ve found that it’s usually better to proceed with
some decision than no decision. The decision can always be reversed later, but in the meantime, the
team can continue working. As for impediments, the ScrumMaster either personally removes them
or causes them to be removed as soon as possible. When the ScrumMaster does the latter, he or she
makes visible to the organization a policy, procedure, structure, or facility that is hurting productivity
rather than helping

Successful ScrumMasters have certain personality traits. He or she is usually focused and deter-
mined to do whatever is necessary for their Scrum teams. Some people aren’t appropriate as
ScrumMasters. They aren’t comfortable being that visible and taking that much initiative. Removing
impediments requires determination and stubbornness.

167

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

Roles and Responsibilities - Team

The Development Team manages the work during each Sprint The Product Owner indicates what
functionality most needs to be developed. The Development Team identifies and organizes the tasks
and work necessary to the results of the Sprint into a potentially shippable product increment. Col-
laborating with the Product Owner, the Development Team determines how much priority function-
ality it believes it can cover in the next Sprint.

Scrum work management is a radical shift from traditional Project Management Institute priorities.
These practices call for a project manager to predict and plan all of the work as well as to assign it to
individuals, track its completion, and make any necessary adjustments along the way. Scrum work
management instead follows modern lean manufacturing practices and engineered process controls
used in complex development environments. Scrum teams have these characteristics:

1. They are cross-functional, containing all of the technical and business domain expertise to take
full responsibility for moving from requirements forward to working product functionality.
2. They are limited in size in order to maximize the speed, content, accuracy, and bandwidth of
communications. Team size is seven plus or minus two people. When there are multiple teams, the
teams get together to synchronize their work on a daily basis.
3. They are authorized to organize themselves, to divide and assign work amongst themselves.
4. They are enabled to let specific tasks require to create an increment of functionality emerge as the
Sprint progresses; they are expected to be able to make perfection predictions.

For the duration of the Sprint, the Team has the authority to manage itself. Its main goal is to do the
best that it can. Applying the technology to the requirements, the Team analyzes, designs, codes, and
tests. At the end of the Sprint, the Team demonstrates what it has accomplished. The Team uses
workstations to show the Product Owner the functionality it has created. Only real working function-
ality count; interim artifacts such as models do not count.

Sometimes the Team does less than it has predicted it would be able to. Sometimes the Team imple-
ments the selected requirements even more deeply than it had expected it could. Regardless, the
Team does the best that it can. For one Sprint, the Team alone wrestles functionality from complex,
sometimes unstable technology and from often-changing business requirements.

To many, it may seem risky and even foolhardy to trust the Team to plan and execute its own work.
However, this type of agile development has been successfully used in literally thousands of projects.
Two types of productivity result. Firstly, nobody has to tell the team what to do, and then keep the
plan up to date as changes are required. Secondly, the Team works more effectively without having
to rely on external authority for any changes.

The U.S. Marine Corp. uses an approach similar to agile processes for battle situations. In Corps
Business1 General Charles C. Krulak , the Thirty-first Commandant of the USMC, describes the new
“three block war” that the corps faces today – “ Marines may confront the entire gamut of tactical

168

Subject:

Copyright 2003 Advanced Development Methods, Inc. All Rights Reserved

challenges within the narrow confines of three continuous blocks.” To prepare the marines, the actual
fighters, for this situation, the USMC both trains everyone extensively in all potential skills and
situations that can be conceived, and then advises the marines on the context, mission, goals, and
risks of every situation before they are sent in. But, from then on, the marines are on their own,
making their own decisions. Their officers provide as much tactical information as possible, but the
ultimate decisions come from the soldiers. As General Krulak says, “on the complex, asymmetrical
battlefields of the twenty-first century, effective decentralized control and execution will be essential
to mission success” (Corps Business, David H. Freedman, HarperCollins Publishers, 2000). This
same type of decentralized control and execution by agile teams is required to successfully cope with
the complex changing requirements and complex unstable technology required for today’s successful
systems. These teams manage themselves based on their skills and understanding of the technical
and business domains.

Roles and Responsibilities - Development Team

	Table of Contents
	License and Restrictions
	Introduction
	Overview of Agile Processes
	Agile Structure
	Overview of the Scrum Process
	Scrum Management
	Value driven development
	Scrum Management Roles
	Overview of the Scrum Methodology
	Meetings
	Artifacts
	Product Backlog
	Sprint Backlog
	Increment of Potentially Shippable Product Functionality
	Quality of the Increment
	Structure of Phases, Paths, and Activities
	Scrum Phases
	Planning
	Staging
	Initiating
	Developing
	Releasing
	1 Planning
	1A New, Unfunded Projects
	1B New, Funded Projects
	1C Underway, Already Funded Projects
	1D Fixed Price/Fixed Date Projects
	1.1 Define the Project
	1.15 Define Architecture
	1.15 Define Architecture
	1.16 Design System
	1.2 Build Product Backlog
	1.3 Estimate Product Backlog
	1.4 Adjust Backlog Estimates
	1.5 Plan the Releases
	1.6 Prepare Bid
	1.61 Prepare Fixed Price/Date Bid
	1.7 Fund Project
	2 Define Increment of Shippable Product
	2A Internal Software Development
	2B Commercial Software Development
	2C FDA Life Critical Development
	2D Mission Critical Development
	2E Package Selection Development
	3 Multi-team or Offshore Development
	3A Single Team Development
	3B Multi-Team Development
	3B.1 Develop Business Architecture
	3B.2 Develop Systems Architecture
	3B.3 Define Development Environment
	3C Offshore Software Development
	3C.1 Develop Requirements
	3C.2 Develop Business Architecture
	3C.3 Develop Systems Architecture
	3C.4 Define Development Environment
	3C.5 Develop Acceptance Tests
	4 Development Environment
	5 Project Staffing
	6 Project Initiation
	7 Sprint Planning Meeting
	7.1 Facilitate Sprint Planning Meeting
	7.2 Present Product Backlog
	7.3 Select Product Backlog for Sprint
	7.4 Define the Sprint Goal
	7.5 Construct Sprint Backlog
	8 Product Backlog Development
	8.1 Manage Product Backlog
	9 Sprinting to Develop Product Functionality
	9.1 Develop Increment of Functionality
	9.2 Maintain the Sprint Backlog
	9.3 Assess Sprint Burndown
	9.4 Readjust Commitments
	9.5 Abnormal Sprint Termination
	9.6 Stop External Interference
	9.7 Remove Impediments
	10 Daily Scrum
	10.02 Setup Facilities for Daily Scrums
	10.1 Conduct the Daily Scrum
	10.2 Commit and Status
	10.3 Make Decisions
	10.4 Remove Impediments
	10.5 Attend the Daily Scrum
	10.6 Scrum of Scrums
	11 End of Sprint Review
	11.1 Conduct Review
	11.2 Demonstrate Functionality
	11.3 Evaluate the Functionality
	11.4 Manage the Release
	11.5 Sprint Retrospective
	11.6 Project and Sprint Reporting
	11.7 Attend the Sprint Review
	12 Create a Release
	12.2 Initiate Sprints to Build Release
	Roles and Responsibilities - Product Owner
	Roles and Responsibilities - ScrumMaster
	Roles and Responsibilities - Team

